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Seasonal variations of nonmethane hydrocarbons
in rural New England: Constraints on OH concentrations

in northern midlatitudes
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Abstract. Concentrations of C,—Cg hydrocarbons are reported at Harvard Forest in Central
Massachusetts (42.54°N, 72.18°W; elevation, 340 m), measured at 45-min intervals from August
1992 through July 1994. The seasonal cycle of background concentrations for anthropogenic
alkanes (ethane, propane, butane, isobutane, pentane, and hexane) and acetylene could be cleanly
extracted from the ~900 measurements each month. Background concentrations exhibited
seasonal maxima in winter and minima in summer. The phase of the seasonal cycle for each
species reflected its rate of reaction with OH: The faster the reaction, the earlier the peak in
winter, and the more rapid the decline in spring. Winter:summer ratios for hydrocarbons more
reactive than propane were similar, implying a summer:winter ratio for OH of 9 * 2 at northern
midlatitudes. The annual cycle for ethane provides a measure of the mass-weighted annual mean
OH concentration at northern midlatitudes, 7(+3.5) x 10°cm™, as simulated by using a three-

dimensional chemical tracer model.

1. Introduction

Most anthropogenic hydrocarbons are removed from
the atmosphere primarily by reaction with OH. At northern
midlatitudes, rates for removal vary markedly with season,
while emissions are largely invariant. Seasonal variations
in rates for long-range transport play a relatively minor
role in the observed seasonal cycles. Hence the seasonal
cycles for background concentrations of hydrocarbons pro-
vide a unique measure of OH concentrations averaged over
midlatitudes.

This paper presents measurements of C,—Cg hydrocar-
bons at Harvard Forest in Central Massachusetts (42.54°N,
72.18°W; elevation, 340 m), obtained at 45-min intervals
for 2 years. The data are analyzed to derive monthly mean
background concentrations and to determine emission
ratios for U.S. regional anthropogenic sources. Emission
ratios are found to be consistent with the National Acid
Precipitation Assessment Program (NAPAP) inventory.
Background concentrations are consistent with previous
observations from remote locations obtained at lower tem-
poral resolution [Jobson et al., 1994; Blake and Rowland,
1986; Penkett et al., 1993; Rudolph et al., 1989; Singh et
al., 1988; Singh and Salas, 1982; Lightman et al., 1990;
Tille et al., 1985]. Observed annual cycles are analyzed by
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using photochemical models in order to constrain the
annual mean and seasonal cycle for concentrations of
hydroxyl radical in the northern midlatitude troposphere.

2. Experiment

Automated in situ measurements of C,—Cg nonmethane
hydrocarbons (NMHCs) were obtained simultaneously at
two altitudes, 24 and 29 m (2 and 7 m above the forest
canopy) by using cryogenic concentration and gas chroma-
tography as described by Goldstein et al. [1995]. Data
were normally downloaded at 6-day intervals, although the
system could operate continuously for more than 2 weeks
unattended. Air was drawn through Teflon tubing from the
inlets through nafion dryers (Perma Pure Products) to
remove most of the water vapor, then through Ascarite II
(Thomas Scientific) to remove CO,, O, and residual H,O.
Samples (400 cm® STP) were collected over 10-min
periods at 87°K on dual traps of 0.030-inch ID stainless
steel tubing, then injected into a gas chromatograph with
dual PLOT GS-Alumina 30-m Megabore capillary
columns (J&W Scientific) and flame ionization detectors
(FID) (Hewlett Packard 5890 series II). The null concen-
tration gradient was determined by sampling from the
same level every fifth run.

Concentrations were determined by using relative
response factors [Ackman, 1964, 1968; Dietz, 1967] refer-
enced to neohexane (Scott-Marrin, NIST traceable +2%),
an internal standard added by dynamic dilution to every
sample. The overall accuracy of the system was estimated
to be better than +18% for all the C,—Cg hydrocarbons
based on accuracy attributed to the neohexane standard,
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flow measurements for the dynamic dilution system, and
relative response factors. Instrument precision was
approximately 2% at 1 ppbv, 5% at 0.5 ppbv, 10% at 0.2
ppbv, and 20% for concentrations less than 0.1 ppbv, as
determined by the variance between the dual measure-
ments taken from the same level. The minimum detectable
concentration for all compounds was 0.01 ppbv. Measure-
ments have continued to the present time. Other continu-
ous measurements at Harvard Forest include concentra-
tions of CO, CO,, O3, NO,, NO,, H,0, rain composition,
wind speed and direction, temperature, and fluxes of sensi-
ble heat, latent heat, O3, NO,, and CO, by eddy correla-
tion [Wofsy et al., 1993].

3. Results

The influence of OH on hydrocarbon seasonal cycles
was examined by distinguishing background concentra-
tions from pollution events and identifying compounds
with nearly aseasonal emissions in northern midlatitudes.
Data for ethane and acetylene are shown in Figure 1 for
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Figure 1. (a) Ethane and (b) acetylene concentrations
measured at 45-min intervals above Harvard Forest from
August 1992 to July 1994. A line is drawn through the
running 0.1 quantile of the data in 30-day intervals, identi-
fying the seasonally changing background concentration.
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Figure 2. Background concentrations from August 1992
to July 1994 defined as the running 0.1 quantile of the data
in 30-day intervals for (a) ethane, acetylene, propane, and
butane and (b) isobutane, pentane, hexane, and propene.

August 1992 through July 1994, Background concentra-
tions are clearly delineated by the lower envelope of the
points, brought out by the line indicating monthly 0.1
quantiles. The annual cycles of background concentrations
for ethane, acetylene, propane, butane, isobutane, pentane,
hexane, and propene, defined as the 0.1 quantile of the data
filtered in 30-day intervals, are shown in Figure 2.

Figure 3 shows 2 months of ethane data on standard
cumulative probability axes, with lines drawn through the
0.1, 0.2, 0.3, 04, and 0.5 quantiles. The 0.1-0.3 quantiles
are unaffected by pollution events or by occasional low
values, which appear in some cases to result from stratos-
pheric intrusions (high O3, low H,O). The value inferred
for "background” is consequently insensitive to the partic-
ular quantile selected, lending confidence to the procedure.

Figure 4 shows scatterplots of simultaneous data for
ethane, propane, isobutane, butane, pentane, and hexane,
plotted against acetylene, for the same 2 months. The
correlations observed in these scatterplots represent the
signature of pollution inputs, as air with variable amounts
of dilution, but consistent ratios among primary pollutants,
is sampled at the site. Emission ratios measured at Harvard
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Figure 3. Ethane concentrations for the months of July
1993 and January 1993 plotted on standard cumulative
probability axes, with lines drawn through the 0.1, 0.2, 0.3,
0.4, and 0.5 quantiles. Pollution episodes are clearly
separated from background data.

Forest relative to acetylene (Table 1a) are reported as the
mean (x1c) slope (line fit assumed uncertainty in both
coordinates [Press et al., 1992]) of summer months (June,
July, August) and winter months (December, January,
February) for 2 years of data.

Absolute emissions of hydrocarbons in North America
(predominantly from automobiles) do not vary
significantly with season, according to the 1985 NAPAP
emission inventory. (New regulations in the clean air act
amendments of 1990 required the use of oxygenated fuels
during the winter (beginning in 1992) in most CO nonat-
tainment areas including much of the northeastern United
States. The projected effect of this legislation was a 15%
reduction in hydrocarbon emissions [The Oxygenated
Fuels Association, 19941].)

Observations of emission ratios for ethane and propane
at Harvard Forest (Figure 4) show evidence for at least two
sources, one associated with little or no acetylene that is
observed more often in winter. Observations show essen-
tially no seasonality for isobutane, slightly higher butane
emissions in winter, and significantly higher pentane and
hexane emissions in summer.

Table 1b summarizes monthly 0.1, 0.25, 0.5, and 0.9
quantiles for ethane, acetylene, propane, isobutane, butane,
pentane, and hexane from August 1992 to July 1994.
Background ethane concentrations at Harvard Forest are
consistent with observations at clean air sites in northern
midlatitudes [Jobson et al., 1994; Penkett et al., 1993;
Blake and Rowland, 1986; Rudolph et al., 1989; Singh et
al., 1988; Singh and Salas, 1982; Lightman et al., 1990;
Tille et al., 1985], as expected from its long lifetime (38
days in summer, 450 days in winter). Background concen-
trations of shorter-lived gases (butanes, pentane, hexane)
are more spatially variable, especially in summer, and gen-
erally slightly higher at Harvard Forest than at remote
sites.
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Markedly different seasonal patterns are evident for
compounds with predominantly anthropogenic sources
(ethane, acetylene, propane, butane, isobutane, pentane,
and hexane), which have minima in summer and maxima
in winter, compared to species with strong biogenic sum-
mertime sources (e.g., propene; see Figure 2 and Goldstein
[1994]), which peak in summer. Higher concentrations
were observed at the lower inlet for isoprene, ethene, pro-
pene, and 1-butene, supporting the view that the
anomalous seasonal variations for these reactive species
reflect biogenic sources in the forest environment [Gold-
stein, 1994].

4. Discussion

We initially examine these data, using a simple model,
representing the\extratropical troposphere as a single box
to illustrate the seasonal cycles of hydrocarbon concentra-
tions associated with variation of OH. The model equation
is

dC
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Figure 4. Ethane, propane, butane, isobutane, pentane,
and hexane are plotted against acetylene for July and Janu-
ary 1993. The correlations indicate the signature of pollu-
tion inputs.
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Table 1a. Mean Hydrocarbon Emission Ratios Versus C,H, (+6) Pollution Episodes at Harvard Forest

Alkane/C2H2 Summer Winter NAPAP (MA)? NAPAP (US)®
Ethane 1.80+0.24 2.51+0.50 1.1 19
Propane 1.26+0.11 1.5610.26 0.2 1.1
Butane 0.80+0.06 1.0510.13 1.3
Isobutane 0.38+0.03 0.42140.08 0.33
Pentane 0.37+£0.03 0.2340.02 0.34
Hexane 0.10+0.01 0.0740.01 0.29

Summer includes June, July, and August. Winter includes December, January, and February
2 NAPAP (MA), Massachussets emission ratios. From NAPAP [1985].
b NAPAP (US), U.S. emission ratios. From Middleton and Stockwell [1990].

where the model assumes that the tracer (C) is emitted at a
constant rate (P) and removed solely by reaction with OH
(with rate coefficient k; see Table 2) with all quantities
averaged over northern midlatitudes. We adopt an expres-
sion for OH at northern midlatitudes given by

OH=7x10° [1 - B cos (2rt / 365)] )

where 7 x10° is a value characteristic of annual mean OH
for midlatitudes [cf. Spivakovsky et al., 1990], B is an adju-
stable parameter such that (1-B)/(1+B) is the
winter/summer ratio for OH concentrations, and ¢ is in
Julian days. The global calculations of Spivakovsky et al.
[1990] indicate that B = 0.8 at midlatitudes. Since solu-
tions to (1) and (2) are proportional to P, the influence of
emission rate can be eliminated by examining seasonal
variations relative to the annual mean (relative seasonal
variation, ¢ = C/<C>, .a [cf. Spivakovsky et al., 1990]).

The relative seasonal variations of hydrocarbons calcu-
lated by the simple model and observed at Harvard Forest
show similar behavior (Figure 5). The phase of the sea-
sonal cycle for each species reflects its rate of reaction
with OH: The faster the reaction, the earlier the peak in
winter, and the more rapid the decline in spring.

The shortest-lived species reach steady state even in
winter,

P
" k[OH] ~

The winter:summer ratio for concentrations of hydrocar-
bons with aseasonal emission rates is equal to the
summer:winter ratio for OH. If we assume that acetylene
emissions are aseasonal, but emissions of the other hydro-
carbons are not, we can determine the summer:winter OH
ratio from

A3)

OHsum
OH,,

Q)

[ Cun) [ Pam]

CsumJ P win J

using the empirical seasonal emission ratios in Table 1a.
To determine which hydrocarbons might reach steady
state in both summer and winter, we adopt more realistic
loss frequencies (Figure 6) calculated by using OH from a
three-dimensional (3-D) model [Spivakovsky et al., 1990]
averaged from 32° to 56°N from the ground to 100 mbar

(lowest seven model layers) weighted by mass of the atmo-
sphere [Prather and Spivakovsky, 1990],

[ K(T) OH (x.3.p) fix.y.p) dm

[ fix.y.p) dm

where k(T) is the temperature dependent reaction rate
coefficient, f is the mixing ratio by mass of the hydrocar-
bon species (assumed constant for this analysis), and dm is
the mass element equal to dx dydp. The corresponding
lifetimes for selécted hydrocarbons in summer and winter
are shown in Table 2. The concentration of OH stays near
its peak summer value for approximately 70 days, and the
hydrocarbons (except possibly ethane) have sufficient time
to reach a steady state value in summer; during winter, OH
stays near its minimum for approximately 105 days, allow-
ing time for hydrocarbons with lifetimes less than or equal
to propane to accumulate to steady state concentrations.

Figure 7 shows winter:summer ratios for hydrocarbons
versus reaction rate with OH; results indicated by the line
were obtained by using the simple box model (equations
(1) and (2)). The box model results illustrate that the rate
of increase of winter:summer ratio for hydrocarbons
decreases with k, and this feature is due solely to the
seasonality of OH. Furthermore, isobutane, butane, and
pentane, which essentially reach steady state in both sum-
mer and winter, have ratios within 10% of each other.
Observed winter:summer ratios at Harvard Forest for both
1992-1993 and 1993-1994 are also shown (data for hexane
were not used because the summer minimum was below
our detection limit). The correction for seasonality in
emission rate (equation (4)) has been applied to hydrocar-
bons which meet the steady state conditions defined above
(isobutane, butane, and pentane), but it is not appropriate
for longer-lived species.

The results in Figure 7 imply OHg,,,/OH,;, = 9+2.
Calculations using OH fields from the 3-D model give
mean values 1.5x10% for summer (Julian days 160-230),
0.15x10° for winter (Julian days 315-55) averaged over
northern midlatitudes, i.e. OH,,/OH,;, = 10, in good
agreement with this analysis (in the model box represent-
ing Harvard Forest, OH = 1.6x10° for summer and
0.13x10%for winter).

Penkett et al. [1993] observed concentrations of
alkanes over the Atlantic Ocean off the coast of Ireland

<k(T) OH> =

®)
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Table 2. Hydrocarbon Reaction Rates with OH and Lifetimes
Lifetime Lifetime
OH Rate Coefficient (Summer) (Winter)
Species kem3s!® days days
Ethane 1.42x10717T2 exp(-462/T) 38 450
Acetylene 9.4 x10712 exp(-700/T) 10 116
Propane 1.50x1071772 exp(-44/T) 79 87
Isobutane 1.04x1071772 exp(277/T) 3.6 37
Butane 1.51x1071772 exp(190/T) 3.4 36
Pentane 2.10x107172 exp(223/T) 22 23
Hexane 1.35x107! exp(-262/T) 15 15
OH and temperature used for calculating lifetimes: summer, 1.5x108cm™3 OH, 276 K; winter, 0.15x10%cm™3 OH, 264 K.
2 From Atkinson [1989].
and obtained notably higher winter:summer ratios for -~ (@)
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Figure 5. Relative seasonal variations of ethane, ace-
tylene, propane, isobutane, butane, and pentane (a) calcu-
lated from the simple box model and (b) measured at Har-
vard Forest from August 1992 to July 1994.

Figure 6. (a) Loss frequency of ethane averaged from
32°N to 56°N and 1000 to 100 mbar from the 3D OH
[Spivakovsky et al., 1990] and temperature [Hansen et al.,
1983] fields, and the corresponding seasonal cycles of (b)
OH and (c) temperature.
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Figure 7. Winter maximum to summer minimum concentration ratios of ethane, acetylene, propane,
isobutane, butane, and pentane versus their reaction rate with OH taken from 2 years of Harvard Forest
measurements (maximum and minimum are defined from the 0.1 quantile of the data filtered in 30-day
intervals shown in Figure 2). Simulations using the simple box model (equations (1) and (2)) are indi-
cated by the line. The Harvard Forest data for isobutane, butane, and pentane are corrected for
seasonality in emissions (equation (4)).
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Figure 8. Relative seasonal variations measured at Harvard Forest are shown with the box model
(using loss frequencies calculated from 3D model) and 3D model simulations for ethane, acetylene,
propane, butane, pentane, and hexane, supporting the view that OH chemistry determines the relative
seasonal cycles of hydrocarbons at this site.
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dized in transit across the Atlantic during summer. Hence
concentrations of short-lived hydrocarbons at Harvard
Forest in summer reflect steady state balance between
regional emissions and OH concentrations, but over the
Atlantic, concentrations are affected by rates of transport
from source regions. Penkett’s values are affected also by
operational constraints: Summertime measurements are
near the detection limit and therefore have large uncertain-
ties, and there are relatively few measurements, making it
difficult to identify maxima and minima.

Penkett et al. [1993] interpreted deviations between
iso- and normal alkane data as implying significant rates
for hydrocarbon reactions with NO;. If reaction with NO,
were important, there would be preferential loss of iso-
over normal paraffin isomers, particularly in winter. The
ratio of emissions for butane:isobutane is about 2 at Har-
vard Forest (Table 1a) and also in London [Penkett et al.,
1993]. The ratio of background concentrations for these
butanes is also =2 in winter (639 and 322 pptv at Harvard
Forest and 405 and 193 pptv over the North Atlantic,
respectively), apparently inconsistent with significant reac-
tion of isobutane with NOs;. The butane and isobutane
background concentrations in summer were 70 and 31 pptv
(ratio of =2) at Harvard Forest and were 25 and 47 pptv
(ratio of =0.5) over the North Atlantic [Penkett et al.,
1993]. This low ratio over the North Atlantic in summer
could reflect an additional oceanic source of isobutane in
summer, or there could have been experimental problems
associated with the recovery of very low concentrations
from the flasks.

5. Three-Dimensional Model

The effects of transport and chemistry together were
simulated by using a global 3-D chemical transport model
(CTM) with both 4x5 degree and 8x10 degree resolution.
The CTM uses transport fields from the general circulation
model (GCM) developed at the Goddard Institute for
Space Studies [Hansen et al., 1983], as described by
Prather et al. [1987] and Jacob et al. [1987], and has been
used previously to study interhemispheric exchange using
chlorofluorocarbons (CFCs) [Prather et al., 1987] and
8Kr [Jacob et al., 1987], convection using 22Rn [Jacob
and Prather, 1990], and tropospheric OH using CH3CCl;
[Spivakovsky et al., 1990]. We ran the model for hydro-
carbons, using the OH fields of Spivakovsky et al. [1990]
and fossil fuel combustion (aseasonal) and biomass burn-
ing (seasonal) as hydrocarbon sources, with emissions dis-
tributed geographically as for CO by J. A. Logan (personal
communication, 1994). The simulations for hydrocarbons
showed no significant effects from biomass burning for the
box containing Harvard Forest. All results are presented in
terms of relative variation in order to eliminate influence of
the absolute magnitude of the source and as 30-day filtered
0.1 quantiles, consistent with the presentation of the Har-
vard Forest Data.

The relative variations of ethane, acetylene, propane,
butane, pentane, and hexane from the 8x10 model box in
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which Harvard Forest is located are shown in Figure 8.
The similarity of Harvard Forest data with both box and
3-D models (Figure 8) supports the view that OH chemis-
try determines the observed seasonal cycles of background
concentrations for hydrocarbons at this site.

The spatial variance of background hydrocarbon sea-
sonal cycles, according to the 4x5 model, is shown in Fig-
ure 9. Results are plotted for the Harvard Forest Box, the
boxes to the north (8°) and east (10°), and a box over the
North Atlantic (8°N, 50°E) for both ethane and butane.
The relative amplitude in the Harvard Forest box is
significantly smaller than that in boxes to the north and
east, and over the Atlantic for butane, but not for ethane,
reflecting the relatively uniform distribution of background
ethane concentrations over the hemisphere. The more
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Figure 9. Spatial variance of hydrocarbon relative sea-
sonal variation as simulated by the 3D chemical tracer
model (4x5 resolution). Results are plotted for the
Harvard Forest box, the boxes to the north (8°) and east
(10°), and a box over the North Atlantic (8°N, 50°E) for
(a) ethane and (b) butane.
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remote sites exhibit larger winter:summer ratios for the
most reactive hydrocarbons because in summer, significant
losses occur in transit to remote areas (as discussed above
in relation to Penkett et al. [1993]). The consistency of
ethane relative amplitude between different locations in
northern midlatitudes is confirmed by comparison with
other measurements of time series for ethane [Penkett et
al., 1993; Blake and Rowland, 1986]. Ethane is therefore a
good tracer for analysis of hemispheric mean OH.

Model OH [Spivakovsky et al., 1990] was evaluated by
using observed seasonal cycles for ethane. Simulations
with model OH multiplied by 0.5, 1.0, and 1.5, and with
annually averaged (aseasonal) OH, are shown in Figure 10.
The aseasonal run (Figure 10a) indicates that the seasonal
cycle for ethane is not produced by seasonal variations of
transport rates. The data agree best with unmodified fields
of OH and appear to be bounded by +50%. Results for
ethane are similar if the simple box model is used (Figure
10b), reflecting the weak influence of transport on seasonal
cycles. There is a small phase shift between the ethane data
and the models. This shift could reflect some seasonality
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Figure 10. Simulations of sensitivity of ethane relative
seasonal variation to changes in absolute OH concentration
(50%, 100%, 150%) using the (a) 8x10 model and (b) sim-
ple box model (using loss frequency calculated from the
3D model), compared with Harvard Forest data. Simula-
tions with annually averaged (aseasonal) OH are indicated
by the dotted line.
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in ethane emissions, with higher emissions in fall and
winter. Results for butane are insensitive to OH concen-
trations, as expected from the discussion above. There is
almost no difference between the x1 and X1.5 runs, with
slightly smaller relative variation for the x0.5 run.

6. Conclusions

We have presented 2 years of continuous measure-
ments of C,—C¢ hydrocarbon concentrations in rural New
England. Seasonal cycles of background NMHC concen-
trations can be cleanly extracted from measurements made
with sufficient frequency at a rural site near an industrial-
ized region. Background concentrations of hydrocarbons
with predominantly anthropogenic sources (ethane, ace-
tylene, propane, butane, pentane, and hexane) reach max-
ima in winter and minima in summer. The more rapid the
rate for reaction with OH, the earlier the winter peak, and
the faster the spring decline. Comparison with data in the
literature indicates that the background concentration of
ethane is evenly distributed in northern midlatitudes in all
seasons, as is expected from its lifetime (38 days in sum-
mer, 450 days in winter), while background concentrations
of more reactive gases (butanes, pentane, and hexane) are
higher near source regions in summer and uniformly distri-
buted in winter.

Hydrocarbon background seasonal cycles observed at
Harvard Forest are regulated by balance between nearly
aseasonal anthropogenic emissions and chemical loss by
reaction with OH. The amplitude of the annual cycle for
ethane background, relative to the annual mean, is a meas-
ure of absolute OH concentrations, while relative varia-
tions of species with lifetimes shorter than the lifetime of
propane are sensitive only to the ratio of OH in different
seasons. The data imply a summer:winter ratio for
hydroxyl radical in the range 9 *+ 2 at northern midlati-
tudes, and annual mean OH concentrations of 7x10°cm™
+50%.
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