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Introduction

e This supporting information covers the updated yields for potential secondary aerosol
from hydrocarbon precursors, specifically for oxidation conditions of low-NOx levels.
These yields are updated to reflect current laboratory experiments. The time-resolved,
speciated yields for PSOA are also shown, as an indicator of which emissions would
lead to SOA at a given point during evaporation of DWH oil.



Table S1. Fractional potential secondary organic aerosol yields for C1-C25
hydrocarbons for 8 classes of hydrocarbons (n-alkanes, branched-alkanes, cyclic

alkanes (cycl), branched-cyclic alkanes (cycl1-2), bi-cyclic alkanes (cyc?2), tricyclic
alkanes (cyc3), alkyl-benzenes (arom), and polycyclic aromatic hydrocarbons (PAH).

nALk
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0.0036
9 0.0072
10 0.0156
11  0.0318
12 0.06
13 0.14
14 0.22
15 0.31
16 0.4
17 0.49
18 0.58
19 0.67
20 0.76
21 0.845
22 0.925
23 0.995
24 1.055
25 1.095
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0.0084
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0.385
0.534
0.6
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0.75

cycl

o O O O O
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0.057
0.098
0.17
0.27
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Figure S1. Speciated PSAO “fluxes” during the evaporation of DWH oil for the
deep-sea case (reduction by 50% of >C10 aromatics) for a slick with 0.15mm
thickness. These results directly correspond to the left panel of Figure 9. Colors
correspond to hydrocarbon classes: n-alkanes (red), branched linear alkanes
(magenta), monocyclic alkanes (orange), branched monocyclic alkanes
(purple), bi- and tri-cyclic alkanes (green), polycyclic aromatics and alkyl
benzene compounds (black). The yields correspond to the end-point yields of
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SOA from the real-time evaporative emissions. The inset shows the high fluxes
within 15 minutes of evaporation, aromatics dominate at very short times.
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