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ABSTRACT 

This work investigates the seasonal variability of CH4 and N2O source apportionment 

from year-long measurements of GHGs, CO and a suite of VOCs in California’s Central Valley 

from summer 2012 through early fall 2013. We apply the statistical technique of positive matrix 

factorization (PMF) on the combined GHG - VOC data set over seven separate periods that are 

representative of broad seasonal patterns observed in the region. We also compare our results to 

inverse modeling estimates at WGC for the same time-period.    

Livestock are the largest regional source of CH4, accounting for a majority of total 

emissions over different seasons. A second source of CH4 is observed from microbially-mediated 

temperature-dependent emissions influenced by land / soil management practices and natural 

wetland ecosystems. A third ‘urban and oil / gas source’, containing CH4 but no N2O is theorized 

to be emitted from an aggregation of upwind sources in the San Francisco Bay Area and the Rio 

Vista natural gas fields. Only two significant source categories of N2O are discerned from the 

PMF analysis – an ‘agriculture + soil management + delta’ source containing microbe-driven soil 

emissions of N2O resulting from fertilizer application and a dairy / livestock manure-

management source. Seasonality has a strong influence on CH4 and N2O biological emissions 

and this phenomenon is clearly observed using a top-down measurement approach.  
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1    EXECUTIVE SUMMARY 

1.1     Background 

The 2006 AB32 law requires the state of California to regulate and reduce its GHG 

emissions. The law directs the state’s chief air quality regulatory agency, the California Air 

Resources Board (ARB), to be the lead agency in implementing AB32. The ARB maintains an 

annual statewide GHG inventory that includes estimates of human-related GHG emissions in the 

state. The GHG inventory is an important policy and guidance tool for AB32 implementation. 

Hence, there is an essential need for the ARB to verify and validate the accuracy of emissions 

reported in the GHG inventory through actual top-down measurements, whenever possible. Most 

GHGs are emitted from multiple anthropogenic sources that simultaneously emit additional 

chemicals like Volatile Organic Compounds (VOCs), which can serve as tracers for those 

specific source categories.  Thus, local and regional GHG emission sources impacting a 

monitoring site during a specific time period can be constrained through simultaneous 

measurements of GHGs and specific VOCs. Previous direct measurements of GHGs in the state 

have relied on inverse modeling experiments (Zhao et al., 2009; Jeong et al., 2012b) from tall 

towers at annual time scales; or employed simultaneous and collocated measurements of VOCs 

to identify GHG sources but over a relatively smaller spatial and temporal scale (Guha et al., 

2015). An integrated campaign which combines the merits of both the above-mentioned 

approaches was desired by the ARB to determine the suitability of the VOC-based source 

apportionment techniques to understand temporal distribution of GHG sources impacting a 

receptor site in the Central Valley over an annual time frame.    

 



 

2 
 

1.2     Methods 

This contract was developed to meet the above-mentioned need by performing statistical 

source apportionment on a combined GHG - VOC data set measured at the Walnut Grove tower 

(WGC) near the Sacramento - San Joaquin River Delta region in California’s Central Valley. 

The field campaign funded by this contract took place from the start of summer of 2012 through 

the end of summer of 2013. The field campaign was preceded by thorough preparation and 

intensive development of the PTR-MS instrument to ensure accurate identification and collection 

of many unique molecular entities (m/z) or VOCs. The year-long measurements were divided 

into seven unique periods that are representative of broad temperature / precipitation regimes 

encountered in this region, Following post-processing, the refined data sets were analyzed using 

the statistical source apportionment technique of Positive Matrix Factorization (PMF) to 

investigate the sources of CH4 and N2O influencing the measured signals at this site. The PMF 

analysis applied to the GHG-VOC data set is explained in detail in Chapter 4. The team’s 

analysis resulted in novel results that are being prepared for publications, have been documented 

in a PhD dissertation (Guha et al., 2014), and are summarized in this report (Chapter 4). 

1.3     Results 

Mean percentage contributions to CH4 apportionment in different seasons have been 

summarized in Table 1.1. We find that dairies and livestock operations in the region surrounding 

WGC are the largest contributor to the observed CH4 enhancements accounting for 55 – 90 % of 

the emissions depending on time of the year. The seasonal variation in range of CH4 

enhancements ascribed to this source is mainly caused by the varying contribution from the 

‘agriculture + soil management + delta’ source, that varied substantially over the course of the 
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year.  This source contains anaerobically mediated emissions from a combination of wetlands, 

peatland pastures and flooded / drained agricultural systems in the surrounding Delta. The CH4 

contribution from this sector is temperature driven with peak contributions in the summer season 

(20 - 40 % of enhancements) as opposed to negligible contributions in late fall and winter. CH4 

contributions from a third source, the ‘urban and oil / gas’ source, were observed in all seasonal 

periods. This source contains emissions possibly from the upwind urban core and natural gas 

operations in the Delta and generally accounts for 10 - 20 % of the total CH4 enhancements. This 

sources’ relative contribution was highest during the early fall period (up to 30 %) when the 

temperature-dependent CH4 emissions from the Delta emissions are decreasing, and in the late 

fall period (up to 35 %) when CH4 emissions from the Delta are absent and observed wind 

speeds and directions are more variable increasing the influence of the nearby Rio Vista gas 

fields on the apportioned signals at WGC.  

Table 1.1. Mean distribution (%) of CH4 enhancements in different seasons in the 2012-13 annual cycle at WGC by 
source category as determined using PMF analysis. 

 
* This table does not convey the uncertainties in apportioning CH4 to the dominant sources and correspondingly little significance in attribution to 
weak or distant sources. 
# ND – not detected 

Mean percentage contributions to N2O apportionment in different seasons have been 

summarized in Table 1.2. N2O is measured in four periods (late fall, winter, mid-spring and 

summer) in this study (Chapter 4). There are two apportioned sources contributing to the N2O 

enhancements. One of the sources is the ‘agricultural + soil management’ source arising from the 

Source* Dairy and Livestock Ag (rice) + Soil + Delta Urban + Oil and Gas

early Fall 64 10 26 
late Fall 71 < 1 29 
Winter 90 ND# 10 

Winter-Spring 66 19 15 
Spring  69 21 10 

Summer 2013 61 28 11 
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N fertilizer application for intensive crop cultivation in the Delta. This N2O source is very 

seasonal with peak contributions occurring in the spring and summer season (~ 80 – 90 %) 

coinciding with the cycle of fertilizer use in the first half of the growing season. In the late part 

of the fall season, as agricultural activities around WGC are winding down and so is the fertilizer 

N input to farmlands, this source only accounts for about 20 % of the observed N2O 

enhancements with the dominant share (~ 80 %) being attributed to N2O emissions from the 

dairy and livestock sector. In the winters, there is much less agricultural activity taking place 

around WGC, and the ‘ag +soil management’ source factor is not observed in the PMF of the 

wintertime data. Almost all of the N2O in winter is attributed to the dairy and livestock sector.  

Table 1.2. Mean distribution (%) of N2O enhancements in different seasons in the 2012-13 annual cycle at WGC by 
source category as determined using PMF analysis. 

 
* This table does not convey the uncertainties in apportioning N2O to the dominant sources and correspondingly little significance in attribution to 
weak or distant sources. 
# Phenomenon of mixing and splitting of emissions from collocated sources results in emissions of soil N2O being attributed to the biogenics 
factors (explained in Chapter 6). 

In this report, we also present inverse model estimates of CH4 and N2O emissions 

(Chapter 5) for the June 2012 - August 2013 period for comparison with results derived from 

PMF analysis of co-varying multispecies VOC measurement. Both the source and region 

inversion analyses of CH4 show clear seasonality in emissions. The present study shows that 

Dairy Livestock (DLS), Landfill (LF) and Crop Agriculture (CP) are the main contributors to 

emissions around the WGC tower and this is broadly in agreement with the PMF-based results 

presented in Chapter 4. The posterior emissions resulting from inversions for N2O show clear 

seasonal variations, with maxima in late fall and summer, and lower emissions in winter and 

Source* Dairy and Livestock Ag (rice) + Soil + Delta Biogenics#

late Fall 2012 78 21 < 1

Winter 97 < 1 3 
Spring  17 83 < 1

Summer 2013 13 69 18 
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spring, perhaps due to reduced agricultural (AGS) emissions in the north valley (e.g. see Figure 

5.10). From the results in Chapter 5, it can be seen that the posterior emissions of most N2O sub-

sectors are higher than the prior estimates in most seasons. 

1.4     Conclusions 

In Chapter 6, we conclude that, for CH4, the seasonally resolved apportionment of major 

sources at WGC is, in general, consistent with the distribution in a regional inventory.  The 

relative contribution of CH4 emissions from wetlands / land management practices in the Delta to 

the overall apportionment at WGC is substantial in warm temperature periods (e.g. summers) 

and hence accounting for seasonality in GHG emissions is necessary when using field 

measurements to validate the emission inventory. The consistent lack of N2O in the ‘urban’ 

source factor in all seasonal PMF analyses highlights the insignificant contribution of vehicle 

emissions to ambient N2O observations, compared to agricultural sources, in the region 

influencing the WGC tower. This finding is consistent with other work done by the authors 

(Guha et al., 2015) at Bakersfield in southern SJV which represents a mix of agricultural, 

industrial and urban emissions sources. Based on our observations and the need to address 

uncertainties in the statewide N2O emissions inventory, we recommend a direct evaluation of 

N2O emissions in the urban regions through on-road source-specific emission factor studies. 

The PMF-based regional apportionment for CH4 and N2O is consistent and in broad 

agreement with the results from inverse modeling on the same dataset. There are remarkable 

similarities in the seasonal variation of relative distribution of GHG emissions from major 

sources from these two completely independent estimation techniques. Data from short term 

ground-based studies, ‘snapshot’ airborne measurements and back-trajectory analysis on 
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temporally-limited data are not able to capture the complete seasonal cycle of emissions 

produced from these sources leading to bias in estimates resulting from such studies. 

Measurements made to confirm the bottom-up inventory must account for the seasonality in 

emissions; therefore year-round studies are generally required. In light of our findings, we 

propose long-term source-specific ground-measurements as a more representative method to 

account for CH4 and N2O emissions from sources that can be expected to have seasonally 

varying emissions. 
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2    Introduction 

2.1     Background 

The dominant greenhouse gas (GHG) emitted across the globe is carbon dioxide (CO2) 

which accounts for about 72 % of the total anthropogenic GHG radiative forcing (2.77 Wm-2) 

since the pre-industrial era (year 1750) (IPCC, 2007; Montzka et al., 2011). The remaining GHG 

radiative forcing is attributed to non-carbon dioxide (non-CO2) GHG’s methane (CH4, 21 %), 

nitrous oxide (N2O, 7 %), and halocarbons (< 1 %).  

Table 2.1. Global Warming Potential (GWP; gCO2eq/g) values and atmospheric lifetimes for important greenhouse 
gases from International Panel for Climate Change (IPCC) 4th (2007) and 5th (2013) Assessment Reports (AR).  
 

Trace GHG 
Lifetime 

(years) (IPCC 
AR4 2007 

GWP time horizon 

20 years 
(IPCC AR5 

2013)*

100 years 
(IPCC AR5 

2013)*

20 years 
(IPCC AR4 

2007) 

100 years 
(IPCC AR4 

2007)

Carbon Dioxide (CO2) - 1 1 1 1

Methane (CH4) 12 86 34 72 25

Nitrous Oxide (N2O) 114 268 298 289 298

* with climate-carbon feedbacks incorporated  

These GHG’s have more significant climate change effects than CO2 on a per-ton basis 

due to their higher Global Warming Potential (GWP), calculated based on the intensity of 

infrared absorption by each GHG and their atmospheric lifetimes as shown in Table 2.1. The 

atmospheric lifetime of 12 years and large infrared absorption at unique spectral wavelengths 

gives CH4 a large GWP of 25 (Forster et al., 2007; Montzka et al., 2011).  Anthropogenic global 

CH4 emissions are emitted by agricultural activities like enteric fermentation and manure 

management in livestock (Owen and Silver, 2014) and rice cultivation (McMillan et al., 2007), 

energy sector emissions from oil and gas operations and coal mining (USEPA, 2014), waste 

management (landfills and waste water treatment), and biomass burning (some of which is 
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natural) (Smith et al., 2007; Pacala et al., 2010). N2O has a much longer lifetime in the 

atmosphere (114 years; Table 2.1) and a very high GWP of 298 (Montzka et al., 2011). 

Agriculture is the biggest source of anthropogenic N2O emissions since the use of synthetic 

fertilizers and manure leads to microbial N2O emissions from soil (Crutzen et al., 2007; 

Galloway et al., 2008). Management of livestock and animal waste is another important 

agricultural source of N2O, while industrial processes including fossil fuel combustion have been 

estimated to account for 15 % of total global anthropogenic N2O emissions (Denman et al., 

2007). Owing to its shorter lifetime than CO2, reducing CH4 emissions globally can have a more 

rapid effect on reduction of climate forcing although, in the long-term, CO2 should be the  

primary focus of GHG emission reduction efforts since it accounts for about 85% of our current 

GHG inventory. Top-down assessment of N2O emissions and better quantification will also 

contribute to the long term success of climate change mitigation efforts since N2O is removed 

from the atmosphere much more slowly than CH4 and has a much higher GWP (Montzka et al., 

2011). 

With the passage of California Global Warming Solutions Act (AB 32), California 

became the first state in the nation to adopt an ambitious climate change strategy to reduce its 

GHG emissions. AB32 requires the state to meet a short-term target of reduction of its GHG 

emissions to 1990 levels by the year 2020, representing a 15 % decrease from business-as-usual 

scenario emissions projection of 509 million metric tonnes (MMT) CO2-eq to 431 MMTCO2eq. 

This is to be achieved using a combination of regulatory and reformative measures.  California 

also has a long-term target of reducing GHG emissions to 80% below 1990 levels by the year 

2050, signed in 2005 by Governor Schwarzenegger in Executive Orders S-3-05.  
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The state’s chief air quality regulatory agency, the California Air Resources Board 

(ARB), is entrusted with the responsibility and authority to create regulations to achieve the 

targets defined in AB32. As part of their AB32 implementation process, the ARB’s initial 

regulatory efforts focused on those major point sources of CO2 that are fairly well-quantified and 

can bring about large scale GHG reductions e.g. power plant (through market based regulations 

like Cap and Trade program) and vehicle emissions (through programs like Low Carbon Fuel 

Standard). The stricter regulation of these sectors has contributed to the state’s efforts to achieve 

the 2020 GHG goal. Because of CH4’s shorter lifetime and an even larger GWP on a 20-year 

scale (72; Forster et al., 2007), there is increased attention within the science and regulatory 

community to quantify CH4 emissions using ‘top-down’ methods and explore meaningful 

emission reduction opportunities. Besides aiding the state’s pursuit of achieving the year 2020 

GHG reduction goal, these CH4 reduction efforts have the capability of effectively slowing the 

near-term rate of climate change if adopted on a global scale. There is also a drive to utilize 

assessments of N2O using ‘top-down’ ambient monitoring methods to verify ARB’s ‘bottom-up’ 

inventory and identify/inform potential areas for emission reduction opportunities. 

A statewide GHG emissions inventory (CARB, 2015) is used to measure progress 

towards meeting the AB32 goals. In 2013, CH4 accounted for 41.1 MMTCO2eq representing 9 % 

of the statewide GHG emissions while N2O emissions totaled 13.1 MMT CO2-eq representing 

about 3 % of the GHG emissions inventory (Table 2.2 and Figure 1.1). The CH4 emissions total 

represents a more than 25 % increase from its previous estimate in the inventory (CARB, 2013).  

California is the most populous state in the United States, home to one out of eight people who 

live in the nation with a total of 38 million people. It is also the leading agricultural state 

accounting for more than half of the fruits produced in the nation, and a major source of milk 
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products and vegetables, in all generating more than $43 billion in revenue (CASR 2011). 

Agriculture is the major source of non-CO2 GHG emissions in California as well as nationally 

(USEPA, 2014). Nationwide, in 2013, CH4 accounted for 10 % of the total GHG emissions 

inventory while N2O accounted for 5 % of the emissions. The statewide GHG inventory for CH4 

is similar to the national inventory although the largest source in California (dairy and livestock) 

differs from that in the national inventory (natural gas and petroleum systems). Statewide N2O 

emissions constitute a lesser fraction of total GHG emissions than that in the national inventory 

even though the state’s agriculture sector is so prolific.   

Table 2.2. Sector-wise breakdown of 2013 California CH4 and N2O emissions inventory (Source: CARB GHG 
Inventory Tool, Nov 2015). 
  

major source sector (> 
1% of total emissions) 

Methane Nitrous Oxide 

Emissions (× 106  

tonnes CO2-eq) 
% of total 
emissions 

Emissions (× 106  tons 
CO2-eq) 

% of total 
emissions 

Electricity generation - - 0.4 3

Enteric fermentation 11.8 29 - -

Fugitive emissions 2.4 6   
Other industrial emissions - - 0.2 1

Landfills 8.3 20 - -

Manure management 10.6 26 1.5 12

Natural gas pipelines 3.8 9 - -

Rice cultivation 1.2 3 - -

Soil managementa - - 7.9 65

Transportation - - 1.5 12

Wastewater treatmentb 2.1 5 0.9 7
 

a includes residential and commercial landscaping and related application of fertilizers (~ 10%) 
b includes solid waste composting  

According to the state GHG inventory, enteric fermentation (direct ruminant emission 

from cattle) is the largest source of CH4 in the state accounting for about 29 % of all CH4 

emissions. Manure management (anaerobic lagoons, liquid slurry etc.) is not only the next most 

important CH4 source (26 %) but is also a significant source of N2O emissions (12 %). Waste 
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Figure 1.1. 2013 California emissions inventory for (top) methane (CH4) -  41.1 million ton CO2eq at GWP = 25; 
and (bottom) nitrous oxide (N2O) - 13.1 million ton CO2eq at GWP = 298 (Source: CARB GHG Inventory Tool, 
Nov 2015). 

management is an important CH4 source sector. Landfill gas contributes 20 % of the CH4 

inventory while waste water management processes account for 5 % of the CH4 inventory and 

about 7 % of the state N2O inventory.  There are differences in the distribution of major source 

categories in the nationwide and the state GHG inventories, which primarily reflect very large 

CH4 emissions from dairies in California and differences in industry make-up. While CH4 

emissions from natural gas and petroleum systems (29 %) is very significant in the USEPA 
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inventory, in the state inventory, the industry accounts for a smaller fraction of just above 15 % 

(Figure 1.1). It should be noted that California is the fourth largest oil producing state in the 

country and one of the largest consumers of natural gas. Also,  the current CH4 estimates from 

O&G industry represent a 50 % increase from the same in the previous version of the inventory 

(CARB, 2013) which demonstrates that inventory estimates of this sector are in flux and 

improving.  On the other hand, while the transportation sector only accounts for 4 % of annual 

N2O emissions in the national inventory; this sector has a much larger contribution in the 

statewide N2O inventory (Figure 1.1) accounting for 12 % of the total N2O emissions. This is 

true even after the latest revisions to the previous version of the inventory which had the 

contribution to N2O from the transportation sector at 18 %. It should be noted that direct and 

indirect soil emissions of N2O from agricultural management processes along with residential 

and commercial fertilizer use is, by far, the dominant source of N2O in both the state (65 %) and 

the nationwide inventory. Top-down estimation methods can provide a valuable tool to verify, 

validate and, in some cases, to update the ARB inventory which has seen significant revisions for 

some CH4 and N2O source sectors in its latest edition. 

2.2     Literature Review 

The success of ARB’s GHG emission reduction efforts is contingent on accurate 

accounting of emissions. A majority of CH4 emissions are produced by agricultural sources 

namely enteric fermentation from cattle and management of animal waste (~ 60 %) and if 

decomposition of waste from landfills and waste water treatment is included, a vast majority of 

the emissions originate from microbially-mediated biological pathways (~ 83 %; CARB, 2015). 

Such emissions sources are more likely to be area sources that are spatially and temporally 

variable, and thus difficult to quantify. For instance, differences in manure management practices 
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in dairies from that in feedlots have been reported to result in drastically different CH4 emissions 

(Owen and Silver, 2014). The GHG inventory compiled by ARB for emission accounting is 

based on a ‘bottom-up’ emission factor (EF) approach. This approach utilizes weighted average 

EFs (e.g. methane conversion factor for different animal waste management systems) which 

account for several process and meteorological factors (e.g. seasonal changes in temperatures, 

long-term retention time etc. for animal waste systems). These weighted EFs may still not be 

completely accurate or adequate for estimating emissions from source categories like dairies and 

livestock, landfills, rice cultivation etc. that have a large annual range of emissions that depend 

on a number of factors and management practices, some of which may not be resolved (or even 

possible to quantify) using the ARB methodology. Emission factors derived from ground-based 

and airborne measurements from rice agriculture in California suggest an underestimation of this 

source category in the ARB GHG inventory (McMillan et al., 2007; Peischl et al., 2012) even 

after accounting for rice residue management practices in winter and using the significantly 

revised new seasonally weighted emission factors. Previous literature, mostly evolving from 

studies conducted in California, has demonstrated the spatiotemporal nature and seasonal 

dependence of CH4 emissions from dairy and livestock (Owen and Silver, 2014), natural and 

restored peatlands / wetlands (Cicerone et al., 1983; Teh et al., 2011; Hatala et al., 2012; Knox et 

al., 2014), and from agriculture (including rice) (Salas et al., 2006; Knox et al., 2014; McMillan 

et al., 2007). Currently, the oil and natural gas (O&G) production / extraction sector accounts for 

about 6 % of the state’s total CH4 emissions. A comprehensive spatially resolved state CH4 

emissions inventory for the oil production and natural gas system sector, generated from an 

assortment of public information and US-EPA (Environmental Protection Agency) emission 

factors, estimates emissions that are 3-7 times larger than the state inventory (Jeong et al., 2014) 
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pointing to the need to address uncertainties in the latter. Emissions from major N2O sources of 

agricultural soil management and livestock manure management (Figure 1.1 b) are also 

controlled by microbial activity that scale to a number of environmental factors like N fertilizer 

application rate, soil organic matter content, moisture, management practices, meteorological 

conditions etc. (Guo et al., 2011). In the light of so many variables, it is important to verify the 

emission factors which the ARB inventory uses to compute emissions from these N2O sources, 

using measurement-based approaches.    

A series of ‘top-down’ measurement campaigns conducted in Southern California report 

a range of CH4 emissions from oil and natural gas activities, all of which are larger than that is 

currently attributed to this region in the ARB GHG inventory (Wunch et al., 2009; Peischl et al., 

2013). Inverse modeling of airborne CalNex 2010 observations over California suggest 

underestimation of the CH4 emissions from landfills and wastewater and the oil and gas sector in 

the GHG inventory (Wecht et al., 2014). Most or all of these studies suffer from some 

limitations. Inverse modeling from aircraft observations or direct airborne flux computation can 

estimate surface CH4 emissions but are unable to capture temporal variations in the absence of 

long term monitoring.  Ground based flux towers (Baldocchi et al., 2012; Hatala et al., 2012; 

Knox et al., 2014) are very suitable and representative measurement methods over homogenous 

area source configurations (e.g. wetlands, rice etc.) but not so much over O&G production areas 

and dairy / livestock regions. Inverse dispersion of either tower or remote sensing observations 

can provide continuous long term monitoring but are constrained by potential inaccuracies in the 

transport model and a priori emission maps. It is difficult to evaluate the inventory at regional 

scales accurately in the absence of continuous measurements over long periods of time covering 

large areas. Year-long WRF-STILT inversion of atmospheric CH4 observations have been 
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performed at the Walnut Grove tower (WGC) in the Central Valley of California to estimate 

seasonally averaged CH4 emissions that show clear patterns of seasonal variations along with 55 

– 84 % higher emissions than California-specific a priori models (Jeong et al., 2012a). These 

measurements, when executed over a network of tall towers, allow for constraining emissions 

from individual sub-regions over a larger regional scale with lower uncertainties (Jeong et al., 

2013).  

Global atmospheric concentrations of N2O have been steadily increasing at a rate of 0.2 - 

0.3 % per year (Denman et al., 2007) with current global background levels in excess of 325 ppb. 

Significant portions of this atmospheric increase have been attributed to extensive use of 

nitrogen-based fertilizers (Park et al., 2012). The Central Valley of California is a major 

agricultural region with a per capita output that surpasses any other region in the world (CASR, 

2011). The Valley has a multitude of agricultural and biological sources of N2O including 

synthetic and organic fertilizer application, manure management, wetlands, wastewater 

treatment, and crop residue management (Xiang et al., 2013). Emissions of N2O from 

agricultural soils are estimated in the ARB inventory using an emission factor approach (Guo et 

al., 2011). N2O emissions from the soil are microbially-driven and are affected by numerous 

environmental factors like N fertilizer application rate, soil organic matter content, moisture, 

management practices, meteorological conditions etc., which make these emissions spatially and 

temporally  variable, and thus challenging to characterize (van Groenigen et al., 2010; Guo et al., 

2011; Hoben et al., 2011; Linquist et al., 2012). Large uncertainties exist in the bottom-up 

regional estimation of N2O emissions (NRC, 2010). Very few regional ‘top-down’ assessments 

of the N2O inventory in the US exist, and even fewer over the Central Valley of California. A top 

down inverse approach based on STILT LPDM back trajectory analysis of aircraft observations 
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across the US reported under-prediction of N2O emissions in the EDGAR and GEIA inventory 

by a factor of ~ 2.6 to 3.0, respectively (Kort et al., 2008). There were, however, no airborne 

flask samples collected over the Central Valley in this study and the estimates were limited to the 

early summer period. Atmospheric column-based abundance studies in the Los Angeles region 

have reported significant underestimation of N2O by EDGAR and ARB GHG inventories but 

with high uncertainties. Jeong et al. (2012b) reported the first top-down inverse estimates of N2O 

emissions measured at a tall tower based on the WRF-STILT framework that captured the 

complete annual cycle of N2O emissions in the Central Valley of California. Spatially averaged 

N2O emissions from regions within ~ 150 km of the tower with a large agriculture and dairy / 

livestock influence were higher than EDGAR inventories by a factor of about 1.6 - 2.5 over 

different seasons. A comprehensive account of N2O emissions from field-scale measurements 

conducted in dairies worldwide show a great discrepancy with modeled emissions derived using 

inventory emission factors (Owen and Silver, 2014).   The PMF results in Guha et al., 2015 

indicate that statistically no N2O is apportioned to the vehicle emissions source factor in the 

semi-urban Bakersfield region even though it is included as a significant source in the ARB 

inventory.  

2.3    Rationale and Objectives 

Most of the important GHGs are relatively long lived in the atmosphere, allowing them to 

mix globally.  The global mixing thereby generates background GHG concentrations on top of 

which any regional variations must be measured hence requiring very precise and accurate 

measurements. GHGs are emitted from multiple anthropogenic sources that simultaneously emit 

additional volatile organic compounds (VOCs), some of which have sufficiently long life times 

to enable their detection at a downwind receptor point after being locally emitted from a source. 
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Many of the major sources of CH4 and N2O in California inventory have fairly interpretable 

signatures of VOC emissions that can serve as tracers for those specific source categories. 

Hence, GHG emission inventories from multiple sources can be constrained through 

simultaneous measurements of GHG’s and VOC gas species that, otherwise, are difficult to 

apportion based on stand-alone GHG measurements and modeling.  This project is not the first to 

use VOC tracers to ascribe observed enhancements of atmospheric CH4 to specific sources. For 

example, the project investigator (Goldstein) was involved in an analysis by Shipham et al. 

(1995) in which VOC tracers were used to quantify contributions from different methane sources 

in New England. A more recent study by Lanz et al. (2009) used Positive Matrix Factorization of 

measured VOCs as tracers to define factors corresponding to four different source categories and 

then obtained good correlation for some of those factors with observed CH4 concentrations. 

Multiple studies have measured simultaneous emissions of methane and VOCs for livestock and 

manure management (e.g. Ngwabie et al. 2008; Shaw et al. 2007) presenting correlations and 

emission ratios of CH4 versus individual VOCs. Results from these and other related studies 

could, in theory, be used to guide our analysis of the observations for GHGs and VOCs at any 

fixed site. 

This report describes a collaborative project that built on an existing infrastructure of 

GHG measurements at a tall tower site in California. The specific objectives of this study were: 

1) To perform continuous and high-accuracy mixing ratio and vertical profile measurements 

of a suite of VOCs and N2O, coordinated with the ongoing continuous measurements of 

CO2, CH4, and combustion tracer CO over a complete annual cycle at the Walnut Grove 

tall tower site (WGC; Andrews et al., 2013) in California’s Central Valley to assess the 

apportionment of GHG sources in this region. 
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2) To analyze the mixing ratio time series of GHGs and VOC tracers using a statistical 

source apportionment tool called Positive Matrix Factorization (PMF), in order to 

distinguish individual source category contributions to the regional CH4 and N2O 

emissions. 

3) To evaluate the temporal dependence (if any) in the relative distribution of the 

apportioned GHG source contributions through PMF analysis on shorter season-specific 

time periods. 

4) To compare the statistical source apportionment results from the PMF analysis with that 

derived from an already existing inverse modeling analysis framework (developed for 

previously collected data at the Walnut Grove tower to ascribe regional emission 

estimates to specific source sectors), and also to any regional ‘bottom-up’ GHG inventory 

for the source regions in the vicinity of and influencing the GHG observations at this site.  

 

In this report we describe in detail how each of these objectives were met, the results 

obtained, and their implications and significance. Measurements include vertical profiles from 

the ground to near the top of the WGC tower (525 m) for most species. We parse the year-round 

measurements into smaller data sets representative of the prevailing season and applied PMF 

analysis on subsets of combined GHG - VOC data representing unique temporal periods. To 

determine the major categories of emissions sources contributing to the apportionment of CH4 

and N2O in this region, we used the simultaneous apportionment of VOCs as potential source 

markers, wind rose plots, and diurnal and vertical profiles to identify and categorize the PMF-

generated statistical combinations (factors) as ‘sources’ or combinations of ‘collocated sources’. 

We hypothesized that the regional dairy and cattle industry will have a significant imprint on the 
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apportionment of both CH4 and N2O while the vast expanse of agriculture around the site is 

likely to have a dominant impact on N2O signals.  We investigate the seasonal variation of the 

CH4 and N2O emissions distribution over seven different time periods from mid-2012 until mid-

2013. This study provides advantages over short term GHG measurement studies in multi-source 

regions that only provide a snapshot in time like airborne flux measurements, or back-trajectory 

analysis on aircraft observations. We hypothesized the N2O emissions from agriculture will show 

a seasonal trend that coincides with the primary agricultural growing season in the Central 

Valley while no major seasonal dependence will be observed for CH4 originating from dairies 

and cattle feedlots.  

This project also established the first long-term baseline measurements of certain GHG 

source marker VOCs in the Central Valley of California, facilitating the establishment of GHG 

source category based emission estimates.  Together with the accompanying inverse model 

analysis, these data will provide regionally appropriate GHG concentration and emissions 

estimates for the Central Valley, against which the effectiveness of future GHG emission control 

measures, can be quantified. This project also provides data to show the importance of long term 

monitoring of vertical profiles for a broad suite of tracers on a tall tower as a tool for assessing 

regional air pollution emissions in California, and thus provides a template for implementing a 

larger scale network of sites. 
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3. Measurements 

3.1. Site, Greenhouse Gas Sources and Meteorology 

The GHG and VOC measurements were made at Walnut Grove tower (WGC; Andrews 

et al., 2013) near Walnut Grove, California (121.49°W, 38.27°N, and 0 m above sea level).  

WGC is a tall TV signal transmission tower extending 525 m above ground level (a.g.l). WGC is 

located about 50 km south of the Sacramento metropolitan area and about 50 - 100 km west-

southwest from various urban cores within the extended San Francisco Bay Area as seen in the 

land cover and potential source map of the region in Figure 3.1.  WGC is located at the eastern 

edge of the ~ 3800 km2 Sacramento - San Joaquin River Delta (referred to as the Delta from here 

on), an expansive inland river delta and estuary. Much of the land in the Delta, through the past 

century, has been reclaimed through construction of levee barriers and subsequently drained and 

used for agriculture. Currently, the Delta serves as an agricultural hotspot of California 

producing $500 million/year worth of crops that include corn, walnuts, pears, tomatoes, nursery 

stock, hay and importantly, dairy and livestock (CCCR 2013; SacCR 2013; SCR 2013). As seen 

in Figure 3.1 created using the National Land Cover Database (Homer et al., 2007), cultivated 

crop land is ubiquitous around WGC especially to the west and south west of the site, which is 

the predominant wind direction during a major part of the annual cycle as evidenced in the 

seasonal day time and night time wind rose plots in Figures 3.2 and 3.3, respectively. Thus we 

can expect strong influence of biogenic VOC tracers on signals measured at WGC during the 

growing season. Fertilizer use on farm lands is a major source of N2O, and thus the intensive 

agriculture around WGC is expected to be a significant contributor to N2O signals measured at  
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Figure 3.1. Walnut Grove tower (WGC) site map showing land cover (Homer et al., 2007) and location of local CH4 
and N2O sources, including dairies (solid purple circles) and landfills (solid yellow circles).The increasing size of 
the purple and yellow circles represent increasing number of cows and amount of waste treated, respectively. The 
solid blue boundary line represents the extent of the Sacramento-San Joaquin River Delta. 
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WGC. The site is in close proximity to many dairy and livestock operations, providing an 

additional major CH4 and N2O source. Immediately to the south of WGC lies the San Joaquin 

County which is home to more than 240,000 dairy and livestock cattle (CASR, 2013). Some 

portions of the Delta exist as natural wetlands (Figure  3.1), while some of the low lying islands 

are being converted and restored as wetlands by permanent flooding (Miller et al., 2008) to 

reverse land subsidence due to peat oxidation. Alongside the relatively newer practice of flooded 

agricultural systems (like rice) in the Delta (Hatala et al., 2012; Knox et al., 2014), these wetland 

/ peatland ecosystems are a CH4 source (Le Mer and Roger, 2001; Miller, 2011; Teh et al., 2011) 

and such signals if large enough may be detected at WGC due to its proximity. The intensive rice 

agriculture in the Sacramento Valley, much of which lies around 100 km north-northwest of 

WGC, is a known CH4 source that can be a significant contributor to the local CH4 budget during 

the growing season (McMillan et al., 2007; Peischl et al., 2012). One of the major natural gas 

fields in California, the Rio Vista gas field, is located 15 - 25 km immediately upwind from 

WGC in the Delta. Though a number of smaller landfills exist in and around the urban regions, 

there are no landfills in the Delta.  

WGC experiences a Mediterranean climate characterized by hot and dry summers and 

mild and rainy winters. In summers (Jun - Aug), the seasonal mean daytime temperatures (at 10 

m a.g.l) reach a high of ~ 30°C with early morning lows of about ~ 14°C (Table 3.1). In winters 

(Dec - Feb), the seasonal daytime highs are ~ 14°C and nighttime lows are about 4°C. From 

annual precipitation records of the nearby town of Lodi located ~ 25 km southeast of WGC 

(CIMIS, 2013), the bulk of precipitation in the reported measurement period (Jun 2012 - Aug 

2013; 14 inches) occurred during Dec 2012 – Jan 2013 with minor rain events during  Feb - Mar 

2013. A low-level day time marine inflow moves air inland from the San Francisco Bay Area  
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Table 3.1. Summary of information for seven seasonal sampling periods chosen for PMF analysis along with 
average temperatures during this period, data coverage and list of measured tracers. 

 

Season Start/End date 
Hourly average 

temperature 
rangea (° C)  

Species not 
measuredb 

Number of hourly 
samplesc 

Summer 
 2012 

Jun 16 /  Aug 
31 14 - 30 N2O 1583 

Early Fall  
2012 Sep 1 / Oct 16 13 - 28 N2O 1061 

Late Fall  
2012 Oct 17 / Nov 30 9 - 20 N.A. 774 

Winter / Wet 
season Dec 1 / Jan 29 4 - 13 MeOH 744 

Winter/ Spring  
2013 Feb 16 / Apr 4 4 - 17 N2O , MeOH  1072 

Spring  
2013 Apr 6 / May 31 12 - 25 N.A. 1151 

Summer  
2013 Jun 1 / Aug 4 15 - 30 N.A. 1056 

a range reflects average daily low and average daily high over the sampling period measured at 10 m a.g.l.                                                          
b N.A.  - not applicable; all 13 tracers measured and included in PMF analysis; measured tracers include CH4, N2O, CO, benzene, toluene, 
acetonitrile, methanol, acetaldehdye, acetone, methyl ethyl ketone, methyl vinyl ketone + methacrolein, isoprene and monoterpenes. 
c rows of data containing extended periods of missing VOCs removed all together. 

into the  Central Valley through the Carquinez Straits and along the Delta (Bao et al., 2007). This 

synoptic onshore wind provides the prevalent wind direction at WGC (91 m a.g.l) during the 

spring, summer and early fall season (Apr – Sep) that is driven by intense daytime heating in the 

Central Valley that creates a low pressure over WGC as compared to the coast (Figure 3.2). The 

day time air flow is strongest in the late afternoon hours and weakest during the morning. This 

flow can transport pollution from the San Francisco Bay Area into the Central Valley past WGC 

(Zhong et al., 2004). These dominant flows are likely to bring GHG and VOC emissions from 

the upwind sources in the greater San Francisco Bay Area and the Delta to WGC. 
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Figure 3.2. Daytime distribution of wind speed and direction at WGC during (a) Summer 2012; (b) early Fall 2012 
(Sep 1 – Oct 15); (c) late Fall 2012 (Oct 16- Nov 30); (d) Winter (Dec-Jan); (e) Winter/Spring 2013 (Feb- Mar); (f) 
Spring 2013 (Apr- May); and (g) Summer 2013 (Jun- Aug). The values are measured at 91 m a.g.l, the color scale 
denotes wind speeds (in m/s) and the concentric circles represent the intensity subdivisions (in percent).  



 

32 
 

 

Figure 3.3. Nighttime distribution of wind speed and direction at WGC during (a) Summer 2012; (b) early Fall 2012 
(Sep 1 – Oct 15); (c) late Fall 2012 (Oct 16- Nov 30); (d) Winter (Dec-Jan); (e) Winter/Spring 2013 (Feb- Mar); (f) 
Spring 2013 (Apr- May); and (g) Summer 2013 (Jun- Aug). The values are measured at 91 m a.g.l, the color 
scaledenotes wind speeds (in m/s) and the concentric circles represent the intensity subdivisions (in percent). 
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Figure 3.4.  Simplified schematic at Walnut Grove tower showing location of sampling inlets for the GHG and 
PTR-MS instruments. 
 

The intensity of this flow is reduced in the night due to nocturnal cooling such that down-

valley flows and down-slope flows are observed over the plains and the eastern edges of the 

Central Valley, respectively. At WGC, however, at least during the warmer months (Apr - Sep), 

the coast - inland temperature gradient is still significant enough that the westerly upslope flows 

are maintained even during the nighttime (Figure 3.3). Higher up in the PBL, where the top air 

inlet was at 525 m a.g.l (Figure 3.4), downslope drainage flows brings air down the Sierra 

Nevada mountains from the east, thereby biogenic emissions from oak and coniferous forests and 

their oxidation products (not shown) accumulate in the residual layer at night and mix down 
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during the morning when vertical mixing begins (Misztal et al., 2014). In the absence (or rather, 

weakening) of diurnal surface radiative heating/cooling cycle in the late fall, winter and early 

spring months (Figures 3.2 c-e and 3.2 c-e), the mean flows at WGC are more variable and 

diffused, with confluence of down-valley winds from both the Sacramento Valley in the north 

and the San Joaquin Valley to the south at WGC. The site, thus, experiences mean flows from a 

directionally broader but more local (hence smaller) zone of influence during the cooler / wetter 

months (Oct-Mar). The fall / winter south-easterly flows make the dairy and livestock intensive 

regions of San Joaquin County directly upwind of WGC. 

 3.2. Instrumentation for GHGs and CO 

The GHG measurements were made using a long-term set up and suite of instruments 

that are being used for inverse emissions estimates of CH4 (and later N2O) at WGC since 2007. 

More details about the instrumentation set-up can be found in literature emanating from previous 

studies at WGC (Zhao et al., 2009; Jeong et al., 2012a, 2012b). Briefly, the GHG measurements 

are made using a sampling and analysis system that combines pumps, air driers, and gas 

analyzers. Air samples are drawn from three heights (30, 91 and 483 m a.g.l) as seen in Figure 

3.4 on the tower sequentially, then dried first to a water vapor dew point of 5°C using a 

condensing system and then on a temperature stabilized membrane drier to - 33°C dew point 

before being supplied to the gas analyzers. When switching between the three heights, the first 

4.5 minutes of each sampling period is allowed for equilibration of the gas concentrations and 

instrument response, and thereafter the last 30 seconds is used as the actual measurement. CH4 is 

measured using a cavity ring-down spectrometer (Picarro EnviroSense 1301) with an accuracy 

and precision of 0.3 ppb over a 30 second averaging period. The offset and gain are measured 

periodically and corrected for every six hours using NOAA primary gas standards. In addition to 
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this, ambient air is drawn from a separate line at 91 m a.g.l into flask samples that are collected 

every other day at 1400 PST and later analyzed at NOAA-ESRL to provide further quality check 

on the in-situ measurements. For CH4, the measurement accuracy determined using the 

synchronized flask and in-situ measurements is ~ 1 ppb (Jeong et al., 2012a) which is 

significantly less than the daily range of atmospheric variations seen at WGC. 

N2O was measured using an off-axis Integrated Cavity Output Spectroscopy (ICOS) 

analyzer (Model 907-0015; Los Gatos Research Inc. - LGR). The offset and gain of the LGR 

instrument were measured every 3 hours using two secondary standards tied to the NOAA 

calibration scale and checked using a third standard as a target gas, offset in time by 1.5 hr from 

the calibration gases. As with the CH4 measurements, the in-situ N2O measurements are 

compared with N2O determined from the 1400 PST NOAA flask samples and 6-month mean 

offsets (typically < 0.3 ppb) are removed to minimize residual differences from NOAA 

background N2O used for inverse estimation. Following periodic calibration, individual N2O 

measurements have precision near 0.05 ppb on 2 minute averages and accuracy near 0.1 ppb, 

which is limited by the uncertainties in propagating the NOAA scale from the primary 

calibration gases to the in-situ measurements.  

CO was measured using a gas filter correlation analyzer (48C Trace Level, Thermo 

Electron Corporation - TEC) as part of the NOAA Earth System Research Laboratory’s (ESRL) 

Tall Tower GHG Observing Network (Andrews et al., 2013). Typical long term analytical 

uncertainty for the CO measurements is ~ 6 ppb which is reasonably precise to resolve 

variability on timescales used in this analysis (1 h). In addition, the LGR ICOS instrument also 

measures CO with precision of near 1 ppb. The CO data from the coincident measurements (TEC 

and LGR) were compared over the campaign and showed a high correlation (R2 > 0.99). We are, 
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thereby, confident about the accuracy of the TEC CO measurements. We fill gaps in the CO time 

series using measurements from the LGR analyzer. The CH4, CO and N2O data are finally 

averaged to hourly intervals to create a series with similar time resolution as the VOC 

measurements.  

3.3. Measurement of VOCs 

3.3.1. PTRMS Instrument and Measurement approach 

Major progress in analytical capabilities for measuring atmospheric VOCs in real time 

with low detection limits has been achieved in the last decade using chemical ionization mass 

spectrometry. Proton Transfer Reaction Mass Spectrometry (PTR-MS) is a chemical ionization 

technique based on soft chemical ionization by hydronium ions (H3O
+) in which a wide variety 

of VOCs (with a proton affinity higher than water) can be measured simultaneously with high 

time resolution (e.g. seconds) (de Gouw and Warneke, 2007; Blake et al., 2009). VOCs are 

measured with a mass spectrometer at their parent ion detected on the mass-to-charge (m/z) ratio 

equivalent to its protonated molecular mass (e.g. methanol which has atomic mass 32 is 

measured at m/z 33). Furthermore, the dominant constituents of air including O2, N2, CO2, and 

CH4 do not interfere with measurements since their proton affinities are lower than that of water. 

Because of its low detection limits and fast VOC sensing, PTR-MS instrumentation has been 

extensively deployed in atmospheric measurements worldwide over the past decade and has been 

included in major collaborative ground and airborne measurement missions such as 

CABERNET, INDOEX, TEXAQS2000, TEXAQS2006, ITCT2001, MINOS, NEAQS, 

MILAGRO, ITCT2004, BLODGETT, CABERNET (e.g., Holzinger et al., 2007; Karl et al., 

2004; de Gouw et al., 2003; Misztal et al., 2014; Karl et al., 2013). 
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Automated in-situ measurement of VOCs was performed using a Proton Transfer 

Reaction Mass Spectrometer (PTR-MS) (IONICON Analytik, Innsbruck, Austria). Details on the 

detection limits and calibration approach of the PTR-MS instrument used at WGC can be found 

in previous literature (Holzinger et al., 2005; Fares et al., 2012; Park et al., 2013). At WGC, a 9.4 

L/min (20 CFH) air sample stream was drawn from five separate Teflon sample intakes at 

different heights (10, 131, 262, 394, and 525 m a.g.l) as seen in Figure 3.4. Air was drawn 

continuously through all the five tubes and sub-samples were sequentially drawn from these 

tubes into the PTR-MS instrument for VOC analyses. A set of Teflon solenoid valves performed 

this switch of sample flow every two minutes thus requiring a 10 minute total cycle for one 

vertical profile measurement consisting of each of the five heights (10 m, 131 m, 262 m, 394 m, 

and 525 m a.g.l). After switching to a new inlet height, the first 30 s of a two minute period were 

discarded leaving 90 s of sample flow that was analyzed for ambient tracers. There were 6 of 

such two-minute periods in each hour of measurement and so effectively 540 s of data per hour 

was averaged from each inlet level in order to achieve detection limits in the lower pptv range. 

The instrumental background was evaluated every 3 hours for 5 minutes by sampling zero air 

created by automated drawing of ambient air through a heated Pt/Al2O3 (to 350°C) catalyst to 

remove VOCs. Regular automated calibrations with certified gas standards were performed twice 

daily for all the reported ions (m/z). The standards contained the compounds at 1 ppm each 

which were diluted by a custom-built dilution system using the catalyst zero air (of the similar 

humidity to ambient) to obtain sensitivities from multipoint calibration curves for each 

compound. The PTR-MS was configured to measure approximately 20 masses. The losses in the 

lines were assessed several times by using a separate line to push air containing known 

concentrations of VOCs to the second level (131 m) at different residence times. These tests 
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demonstrated that for all non-sticky compounds the losses were negligible and independent of 

the residence times simulated at the tower.  The sticky compounds (e.g. organic acids) were not 

included in the reported masses. 

3.3.2. VOCs of interest 

A majority of sources of CH4 in the California inventory (see Chapter 2) have fairly 

unique signatures of VOC emissions. In addition, other potential sources such as biomass 

burning which are considered to be minor contributors in the state CH4 inventory (but are 

thought to be important in the global CH4 inventory) also have unique VOC signatures. Here we 

review some of what is known about the VOC emission signatures for these sources. We also 

demonstrate in the next section (Section 3.4 – Pilot Measurements) that VOC tracers can be used 

as CH4 source indicators at this site. We focus the discussion on those VOCs and related trace 

gases that can be measured continuously in-situ using the specified configuration (H3O
+ mode) 

of the above-mentioned PTR-MS while also having a significantly long lifetime to act as a GHG 

source tracer (>  few days and more). 

Table 3.2 provides a list of the currently known tracers that can be measured by the PTR-

MS and attributed to certain CH4 sources, or are indicative of sources that will help us 

understand the origin and photochemical history of air masses observed at the Walnut Grove 

tower. Many of these source categories are unique to specific compounds, while other source 

categories can be indicated by specific combinations of these compounds. Examples of known 

VOC emissions from major CH4 sources are briefly described below. 
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Table 3.2. List of ions (protonated m/z) measured by PTR-MS with ascribed compounds and most significant 
known sources. 
 
Protonated 

m/z 
Compound/group of 

compounds 
Significant source(s) 

33 Methanol Livestock, Manure management, Vegetation, 
Biomass Burning 

35 Hydrogen sulfide Landfills, Manure management 
42 Acetonitrile Biomass burning 
45 Acetaldehyde Rice cultivation, Biomass burning, 

Vegetation, Photooxidation, Manure 
Management 

47 Ethanol + Formic acid Rice cultivation, Livestock (fermenting 
feed), Gasoline 

49 Methanethiol Fugitive emissions, Natural gas leakage 
59 Acetone + Propanal Livestock, Rice cultivation, Vegetation, 

Photoxidation 
61 Acetic acid + Propanol Rice cultivation, Livestock 
63 DMS + Ethanethiol Landfills, Livestock, Rice cultivation, 

Fugitive Emissions 
69 Isoprene, MBO Vegetation (Mainly Oak trees-isoprene, Pine 

trees-MBO)  
71 MVK + MACR Isoprene photooxidation products 
73 MEK Manure Management, Landfills, 

photooxidation of anthropogenic VOCs 
79 Benzene Fugitive emissions, Gasoline, Biomass 

burning 
81 Monoterpenes + Hexenals Vegetation 
83 Hexanals Vegetation 
87 MBO, C-5 hydrocarbons, 

Pentanones 
Livestock, Rice cultivation, Vegetation  

93 Toluene Fugitive emissions, Gasoline 
107 C8 aromatics, ethyl 

benzenes, xylenes 
Fugitive emissions, Gasoline 

109 Cresols Livestock 
113 Oxidation product Isoprene and terpene photooxidation product 
121 C-9 aromatics, TMB Fugitive emissions, Gasoline 
137 Monoterpenes Vegetation 
143 Nonanal Rice cultivation 
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Dairies 

In previous research funded by the ARB, VOCs emitted from dairy cows were identified 

and quantified (Shaw et al., 2007). The experiments were performed at UC Davis by putting 

cows in a room and measuring the VOCs in air entering and leaving the room at a fixed air 

exchange velocity so emission rates could be directly calculated. Measurements of VOCs were 

made using PTR-MS with simultaneous measurements of CH4 and CO2. VOC emissions from 

dairy cows included methanol, ethanol, acetone + propanal, dimethyl sulfide (DMS), m/z 109 

(likely p-cresol) and acetic acid amongst others, and there were strong correlations between these 

VOC tracers and CH4 and CO2. Detection of such VOCs in the sampled air at Walnut Grove will 

be critical in identifying emissions from dairies, which is assumed in current inventories to be the 

single largest CH4 source in the state (Figure 1.1). Other dairy studies (e.g. Filipy et al., 2006), 

also have demonstrated that ethanol and DMS are prominent VOCs produced by lactating cows 

while slurry waste lagoons can produce certain ketones such as methyl ethyl ketone (MEK).   

Landfills 

Municipal solid waste landfills are known to emit specific VOCs, and the EPA has 

documented emission factors for this source (AP 42, USEPA). The AP 42 reports procedures to 

calculate emission factors for many VOCs including compounds measurable by PTR-MS such as 

hydrogen sulfide, acetone, and MEK.  

Natural Gas Leakage  

Methanethiol (CH3-SH) is an odorant added to natural gas before distribution and fugitive 

losses and leaks can be detected by the presence of this VOC.  
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Fugitive Emissions 

Oil and gas extraction and refining activities emit specific tracer compounds that are also 

emitted by gasoline fuel use. Tracers that can be measured by PTR-MS which indicate fugitive 

emissions or gasoline emissions include ethanethiol, benzene, toluene, C8 aromatics 

(xylenes+ethylbenzenes), and C9 aromatics (trimethylbenzenes etc). 

Rice cultivation 

 As an initial step to obtain a VOC fingerprint of the emissions from rice cultivation 

areas, liquid suspensions were extracted from rice wetlands in the Sacramento-San Joaquin Delta 

and their headspaces were analyzed by PTR-MS (Goldstein and Baldocchi labs, 2011). The most 

unique VOC indicators of rice cultivation are likely to be a combination of nonanal, acetic acid, 

acetaldehyde, propionic acid, and DMS. 

3.3.3. Quality Analysis and Quality Control 

Semi-processed data and raw data collected on a continuous basis were used in post-

processing. Height-segregated normalized counts per second (ncps), averaged zero air data (one 

per 3 hours), sensitivities (1 per day) and preliminary ppb (60 min averages) were subjected to 

quality control procedures and resulted in changes to yield the final 60 min concentration dataset 

from WGC. 

The quality control included zero air validation and reprocessing, sensitivity revalidation, 

filtering of bad periods based on PTR-MS and tower logs and on the visual inspection of each 

dataset looking at drift pressure, m/z 21, m/z 32, m/z 37, room temperature. Comparison of 
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diurnal trends and distribution frequencies of the preliminary and the final data was performed 

for each m/z to check how changes affected statistics and generally to see if the data made sense. 

Zero air (ZA) dataset revalidation 

The revalidation involved: 

1)  Visual inspection of ZA variability and negatives after subtraction. 

2) Marking the periods when zero air was i) not working completely (immediate breakthrough or 

no data); ii) partially working but breakthroughs at high concentration; iii) working with no 

breakthroughs observed, iv) contamination from ZA air catalyst, v) internal interference (e.g. 

O2H+). 

3) Selecting an approach individually for each m/z to include only the valid ZA points (where 

breakthrough was unlikely and no interference was apparent). In some cases (e.g. isoprene) 

occasional negatives at the minimum ambient concentrations were noted. These occasional areas, 

if within the instrumental accuracy, were nudged to the neighboring minimal zero air level to 

ensure all-positive datasets without biasing the overall mean or variance. 

4) Final zero air dataset was obtained by either a) re-interpolating (linear) the valid zero air 

points (perfect zero) or b) re-interpolating the daily running minima (when partial breakthrough 

was observed) 

Sensitivity revalidation.  

This included information from a simultaneous PTR-ToF-MS (Time of Flight PTRMS 

instrument; February 2013) to exclude or estimate relative contribution from interfering masses. 

If the interference was found which was not subtracted with ZA, the sensitivity was derived 
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based on the dominant contribution. In some cases it resulted in m/z being specified as the sum of 

VOC (e.g. acetone+propanal calibrated as acetone). As normalization of count rates includes 

water clusters, additional check was needed to identify spikes in m/z 37 apart from spike 

inspection in m/z 21, and drift pressure. In case of methanol spikes in m/z 32 were also 

investigated.  

Final filtering of resulting concentration 

This was conducted based on information from m/z 32 (O2+) [mostly relevant for 

methanol], presence of gradients and meaningful structures, spike reinspection (e.g. all masses vs 

acetonitrile, benzene), tower log (Dave Bush) and PTR (log).  

The final calibrated dataset was derived for each mass provided it has passed the quality 

criteria. The daily and monthly figures looking at comparison of semi-processed with post-

processed concentrations, potential temperature, m/z 21, O2+ and water clusters were saved 

including Matlab variables and the codes for reference. The periods when drift pressure 

significantly deviated from 2.0 mbar were rejected for all masses.  

After intensive quality checks and post-processing of data, the following masses, 

represented here by their mass-to-charge ratios (m/z), were high quality and included in the 

subsequent PMF analysis: methanol (m/z 33), acetonitrile (m/z 42), acetaldehyde (m/z 45), 

acetone + propanal (m/z 59), isoprene (m/z 69), methyl vinyl ketone (MVK) + methacrolein 

(MAC) (m/z 71), methyl ethyl ketone (MEK) (m/z 73), benzene (m/z 79), toluene (m/z 93), and 

monoterpenes (m/z 137). Acetonitrile (m/z 42) is a tropospheric tracer of biomass burning 

(Lobert et al., 1990; Lobert et al., 1991; Holzinger et al., 1999; Bange and Williams, 2000) but a 

minor contribution from alkanes during pollution episodes to m/z 42 is possible (Dunne et al., 
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2012). Similarly, m/z 93 (toluene) can see small contributions from biogenic monoterpene 

fragments if the concentration of the latter is high. Two more masses, green leaf volatiles (m/z 

83) and C-9 aromatics (m/z 121), were available but their quality was only medium to medium-

high (due to their multi-compound character, and/or more frequent interferences). Therefore, 

they have not been included in the PMF analysis but have been utilized for independent 

comparison with and verification of PMF source factors (in Chapter 4). 

3.4. Pilot Measurements 

To demonstrate the utility of measuring a wider variety of VOC tracers continuously for 

differentiating between GHG sources, and to show the advantages of having vertical profile data 

for these tracers, we collected pilot data during preparation of the project proposal with the PTR-

MS instrument at the Walnut Grove tower from June through August 2011. Nine of the VOC 

tracers that we measured are shown as diurnal average vertical profiles in Figures 3.5a-m along 

with CO, CO2, and CH4. The VOCs were measured at five heights (10, 131, 282, 394, and 525 m 

above ground level (a.g.l)) and CO, CO2 and CH4 were measured at three heights (30, 91, and 

483 m a.g.l).  

The diurnal average figures of the tracers show extremely distinct patterns that indicate 

different source categories and processes contributing (and not contributing) to the GHGs 

observed at this site. A detailed analysis of such data is presented (in Chapter 4) as part of the 

project work, and here we point out a few key features relating the CH4 diurnal cycle and vertical 

profile to some of the key VOC tracers. The complete CH4 vertical distribution and diurnal cycle 

looks distinct from any of the individual tracers, but it does look like a combination of some of 

the tracers. CH4 builds up in the nocturnal inversion layer near the ground, similar to tracers  
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Figure 3.5. Average diurnal cycles of vertically resolved GHG and VOC profiles measured at Walnut Grove tower 
during pilot deployment of UCB PTR-MS: (a) CH4, (b) CO (tracer of fuel combustion, biomass burning), and (c) 
CO2 measured by LBNL and NOAA at the Walnut Grove tower from June 15-August 21, 2011. VOCs shown 
include (d) acetonitrile (biomass burning), (e) toluene (gasoline, fugitive emissions), (f) benzene (fugitive emissions, 
gasoline, biomass burning) - continued next page. 
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Figure 3.5 continued. (h) isoprene (biogenic emission), (i) acetone (livestock, rice, vegetation, photooxidation), (j) 
methylvinylketone + methacrolein (isoprene photooxidation products), (k) acetaldehyde (rice, biomass burning, 
vegetation), (l) mixture of MBO + C5 hydrocarbons + pentanones (livestock, rice, vegetation), and (m) methanol 
(livestock, manure management, vegetation, biomass burning) . 
 
toluene and benzene which are indicative of gasoline and fugitive emissions. However, when the 

inversion layer breaks in the morning between hour of day 8-9, the toluene and benzene 
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concentrations decline rapidly while the CH4 concentrations started to become larger after hour 

of day 6 and then remained high until about hour 13. This morning increase in CH4 looks to be 

related to at least some of the methanol sources which cause methanol to begin increasing just 

after hour 6 and have a very similar vertical profile to CH4 until about hour 13, and also have 

some similar features into the late afternoon. We believe this correspondence of methanol and 

CH4 is mainly a signature from dairy emissions in the region. Note also that the methanol 

concentrations at night are low; clearly showing that the high nighttime CH4 near the ground is 

NOT coming from the dairy operations. Thus, the major features of CH4 variability at this site 

are likely driven by a combination of emissions from dairy and fossil fuel sources. It is also 

likely that emissions from rice are influencing the observations at the tower and they may be 

represented to some degree by m/z 87 (e.g. pentanones). During times when the biomass burning 

tracer acetonitrile is high and vertically well mixed (hours 12-16), CO is also high indicating 

biomass burning is an important CO source, but CH4 (and CO2) were not significantly elevated at 

these times demonstrating that even though biomass burning is a source of CH4 (and CO2) there 

are other larger sources that dominate the observed variability of CH4 averaged over this two 

month period.  

While the fossil fuel tracers toluene and benzene are maximized near the ground (below 

250 m) and at night, the biogenic VOC isoprene is maximum in the afternoon from hours 15-18 

and only very close to the ground, while the isoprene oxidation products MVK+MACR increase 

following the isoprene near the ground but then are maximum at night high above the ground 

(above 250 m). The high MVK+MACR at night above 250m is due to isoprene oxidation 

products flowing downslope from the Sierra Nevada mountains into the valley, and downslope 

flow is stopped by the nighttime inversion layer over the valley. Thus, there is a  
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Figure 3.6. Time series GHG and pilot PTR-MS VOC measurements at the Walnut Grove tower (June 15-August 
21, 2011). 

dramatic separation between highly anthropogenic-influenced air mass near the ground at night 

and highly biogenic-influenced air mass from the surrounding mountains above the inversion 

layer. While this is not directly related to understanding the GHG emissions in the region, it does 

demonstrate a tremendous co-benefit of performing coincident VOC measurements in terms of 
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improving understanding of the vertical and temporal distribution of biogenic and anthropogenic 

VOCs which affect ozone and aerosol formation chemistry in the region.  

A time series of the measurements at the Walnut Grove tower for CH4, CO2 and a small 

subset of the measured VOCs measured are shown in Figure 3.6 for June 15 to August 21, 2011.  

These timelines make it clear that there is a tremendous amount of day to day variability which 

carries rich information about source contributions beyond what can be seen in the daily 

averages shown in Figure 3.5. Each of the increases in CH4 concentrations can be compared to 

simultaneous changes in concentrations for the entire suite of measured VOCs to extract 

information about the sources that contributed (or did not contribute) to the observed increase in 

CH4. In Figure 3.7 we zoom in to examine three specific events that clearly demonstrate how the 

VOC tracers can be used to differentiate sources contributing to individual high CH4 events. The 

first event (Figure 3.7a) demonstrates a fossil fuel signature where increases of CH4 occur 

simultaneously with CO, benzene, and xylenes, without a significant increase in methanol (dairy 

tracer) or acetonitrile (fire tracer). The second event (Figure 3.7b) demonstrates the influence of 

a dairy source where enhanced concentrations are observed for CH4, CO2, and methanol, without 

an increase in acetonitrile, CO, benzene, or xylene (fire and fossil fuel tracers). The third event 

(Figure 3.7c) demonstrates a fire event showing a relatively small but still significant 

enhancement in CH4 with a large increase in acetaldehyde, CO, methanol, acetonitrile, and 

benzene signals, without a significant increase in xylenes (emission of benzene is much higher 

than emission of xylene from fires, while the xylene emission from gasoline is an order of 

magnitude larger than benzene).   

The data shown in Figures 3.5 through 3.7 is indicative of what we expected to observe 

with a yearlong set of observations. This description of the pilot data is qualitative, but it does 
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Figure 3.7. Example events highlight 3 different species specific GHG and VOC enhancements. Specific events include (a) fossil fuel signatures of CH4, CO2, 
CO, benzene, and xylenes, (b) likely dairy source with enhanced CH4, CO2, and methanol, and (c) a fire event showing a small enhancement in CH4 with a 
significant of acetaldehyde, CO, methanol, acetonitrile, and benzene signals.

a b c 
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demonstrate that specific VOC tracers measured simultaneously with GHGs provide indicators 

for the sources contributing to observed concentrations at the Walnut Grove tower. It shows that 

although individual VOCs are not unique to individual sources, given the range of compounds 

that the PTR-MS can measure and our knowledge of source-specific VOC tracers, source 

apportionment techniques like primary matrix factorization analysis can be used with a suite of 

tracers to determine the proportion of CH4 and N2O emissions that can be attributed to a specific 

source. A report on the conducted analysis using positive matrix factorization for the 2012-2013 

measurements is presented in Chapter 4. This chapter also reports our corresponding 

investigation to determine seasonal changes in the distribution of GHG emissions sources over 

the annual cycle. In Chapter 5, we report the simultaneous but independent application of the 

existing inverse modeling approach to ascribe specific amounts of CH4 and N2O emissions to 

each of the source categories determined from an a priori model to quantitatively constrain 

emissions of GHGs. In Chapter 6 of the project, the results of the inverse modeling approach are 

compared with the VOC speciated GHG source contributions from the PMF analysis to further 

validate the project findings. 
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4. Positive Matrix Factorization (PMF) Analysis 

4.1. Experiment 

4.1.1. Principles of PMF 

Source apportionment techniques like PMF have been used in the past to apportion 

ambient concentration datasets into mutually co-varying groups of species. PMF is especially 

suitable for studies where a priori knowledge of the number of sources impacting the 

measurements, the chemical nature of source profiles and relative contribution of each source to 

the concentration time series of a measured compound are unknown or cannot be assumed. PMF 

has been applied to ambient particulate matter studies (Lee et al., 1999; Kim et al., 2004); to 

determine sources of atmospheric organic aerosols (OA) (Ulbrich et al., 2009; Slowik et al., 

2010; Williams et al., 2010); and to gas phase measurements of VOCs in major metropolitan 

cities (Brown et al., 2007; Bon et al., 2011) and over long time spans on continental scales (Lanz 

et al., 2009). PMF is a receptor-only unmixing model which breaks down a measured data set 

containing time series of a number of compounds into a mass balance of an arbitrary number of 

constant source factor profiles (FP) with varying concentrations over the time of the data set 

(time series or TS) (Ulbrich et al., 2009). 

In real world ambient scenarios, sources of emissions are often not known or well-

understood. PMF technique requires no a priori information about the number or composition of 

factor profiles or time trends of those profiles. The constraint of non-negativity in PMF ensures 

that all values in the derived factor profiles and their contributions are constrained to be positive 

leading to physically meaningful solutions. PMF attributes a measure of experimental 

uncertainty (or weight) to each input measurement. Data point weights allow the level of 
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influence to be related to the level of confidence the analyst has in the measured data (Hopke, 

2000). In this way, problematic data such as outliers, below-detection-limit, or altogether missing 

data can still be substituted into the model with appropriate weight adjustment (Comero et al., 

2009) allowing for a larger input data set, and hence a more robust analysis. PMF results are 

quantitative; it is possible to obtain chemical composition of sources determined by the model 

(Comero et al., 2009).  PMF can be applied to data sets that are not homogenous and/or require 

normalization without introducing artifacts as long as relative numerical magnitudes of input 

time series data streams for various compounds are comparable. 

4.1.2. Choice of sampling periods 

In this study, we began with the assumption that we would perform PMF-based source 

apportionment over four separate periods consistent with local seasonal distinctions, as opposed 

to one composite PMF analysis through the entire measurement period (June 2012 – August 

2013). There were two principal reasons behind this choice. Firstly, the factor profiles produced 

in a PMF analysis represent constant linear source configurations that do not change over the 

whole analysis cycle. Some VOCs included in this study have principally light and temperature 

driven sources (e.g. isoprene) and have non-linear dependence on such parameters. Similarly, for 

some compounds, emissions from their largely biological sources would depend and vary with 

the stage of vegetative growth or microbial activity (e.g. methanol, acetone, N2O). Hence, we 

anticipate that the fractional composition of certain source categories can vary significantly 

during different times in the annual cycle and as such, a single factor profile representing a 

source category for the entire year may result in an inaccurate PMF fitting with a higher residual 

error. This constraint can be overcome to a reasonable extent by performing unique PMF 

analyses over shorter time periods when the meteorological variables (like light, temperature and 
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rainfall) impacting the site are more homogenous. Hence, the optimal choice of total number of 

separate PMF analyses to be performed on the larger dataset seemed to be four. These study 

periods are summer (Jun-Aug), fall (Sep-Nov), winter (Dec-Feb), and spring (Mar-May). 

Secondly, this choice of sampling period made more sense as it was consistent with those used in 

previous evaluation of CH4 and N2O emissions from inverse dispersion analysis of atmospheric 

observations at WGC (Jeong et al., 2012a, 2012b). The choice of four seasonal study periods 

would, hence, allow for a potential comparison of PMF results with WRF-STILT derived CH4 

emissions (being evaluated currently).  

We, however, did not have complete data coverage of all tracers through the course of the 

entire campaign as seen in Table 3.1. Two key compounds in the PMF analysis are N2O and 

methanol (MeOH). It was vital to perform PMF analyses over extended periods of time when 

N2O data was not missing since one of the primary objective of this study is to perform PMF-

based apportionment of N2O sources in the region. We conducted the first N2O measurements at 

WGC from mid-October 2012 until end of January 2013 and then after a significant period of 

missing data, measurements continued from start of April until mid-August 2013. Additionally, 

having continuity in MeOH measurements was important as it served as a primary indicator of 

CH4 from dairy and livestock sources as opposed to fugitive and/or urban sources. To comply 

with the assumptions of seasonality and similar meteorological conditions over a sampling 

period, and at the same time ensure minimal missing data of CH4, CO (combustion / industrial 

tracer), N2O and methanol, we decided to perform PMF analyses over seven distinct periods 

based on continuous times of consistent sets of tracers being available, and seasons. Table 3.1 

lists the meteorological characteristics at WGC and a summary of the tracers included in the 

PMF analysis during each of these periods. 
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4.1.3   Mathematical Framework of PMF 

     In the recent past, PMF has been utilized to perform ambient source apportionment of 

organic aerosols (Ulbrich et al., 2009; Slowik et al., 2010; Williams et al., 2010) as well as 

VOCs (Brown et al., 2007; Bon et al., 2011; Yuan et al., 2012). In this study, the PMF technique 

is applied to the combined data set of GHGs, CO, and VOCs to apportion their contributions to 

major source categories influencing the WGC site. The fundamentals of the PMF technique are 

based on the principles laid out in relevant literature (Paatero and Tapper, 1994; Paatero, 1997; 

Comero et al., 2009; Ulbrich et al., 2009). We will briefly mention some concepts relevant to the 

understanding of the analysis carried out in this study.  PMF is a multivariate factor analysis tool 

that breaks down a dataset of speciated trace gas measurements into two matrices. The PMF 

input parameters involve a m × n data matrix X with i rows containing mixing ratios at sampling 

time ti and j columns containing time series of each tracerj. A corresponding uncertainty matrix S 

reports measurement precision (uncertainty) of the signal of each tracerj at every ti (sij). The PMF 

model can then be resolved into two matrices as: 

 

	 	  (1) 

 

where p refers to the number of contributing factors in the solution as determined by the analyst 

(discussed below), gij (mass concentration) are elements of a m × p matrix G whose columns 

represent the factor time series while fij (mass fraction) are elements of a p × n matrix F whose 

rows represent the factor chemical profiles. Thus, one resultant matrix represents the factor 

profiles (F) while the second matrix contains the factor contributions (G) or the total mass 
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contributed by each factor at each time step in the data series. eij are the elements of a m × n 

matrix E containing residuals not fit by the model matrix at each data point. 

The PMF algorithm uses a least-squares algorithm to iteratively fit the values of G and F 

by minimizing a “quality of fit” parameter Q (Bon et al., 2011), defined as: 

	 ⁄  
(2) 

 

In this way, PMF minimizes the sum of squares of error-weighted model-measurement 

deviations. The theoretical value of Q, denoted by Q-expected (Qexp) can be estimated as: 

 
≡ 	 	 	  (3) 

 

If all the errors have been estimated within the uncertainty of the data points (i.e. eij  sij
-1 ~ 

1) and the model fits the data perfectly, then Q should be approximately equal to Qexp. The PMF 

technique does not require assumption of any a priori information regarding the composition of 

source factors and does require the constraint of non-negativity of the factor solutions.  

A custom software (PMF Evaluation Tool v2.06, PET) developed by Ulbrich et al. (2009) 

was used to perform the multivariate analysis. Time series of 13 tracers (two GHGs CH4 and 

N2O, CO and 10 VOCs) were initially combined into a unified data set. An account of the 

statistics of the year-long measurements of each of these tracers is listed in Table 3.1. A number 

of data preparation steps, described in the next three sections, are involved prior to application of 

PMF to smaller seasonal datasets derived from the unified data matrix based on our choice of 

PMF sampling periods. For this study, post-processed measurements from the Picarro CH4 



 

63 
 

instrument, LGR N2O/CO analyzer and the PTRMS (for VOCs) were combined into a unified 

data set to create matrices X and S.  

4.1.4   Choice of measurement height for PMF analysis  

GHGs and VOCs are measured at different heights on the tower with different inlets and 

separate, dedicated sampling lines. Figure 3.4 lists the measurement height and species data that 

are available at each of those heights. N2O data was available at two inlet heights (91 m and 483 

m a.g.l) with no measurements at the bottom-most level (30 m a.g.l). Additionally, CH4 data at 

the bottom-most level was more likely to be influenced by nearby sources than data at upper 

heights, potentially biasing the measurements. Hence, it was decided to not utilize the GHG data 

observed at the bottom-most height for the purpose of PMF analysis, and to use the more 

regionally relevant data from a higher inlet height instead. The hourly diurnal patterns of CH4, 

N2O and CO enhancements at the middle (91 m a.g.l) and top (483 m a.g.l) inlet heights, during 

different seasons, were found to be consistent and similar (Figures 4.1 a-d, 4.3 i-l and 4.1 e-h, 

respectively). We, thus, conclude that the variability of GHGs and CO signals measured at the 

middle inlet height (91 m a.g.l) is very similar to what would be  measured at 131 m a.g.l (since 

it lies between 90 and 483 m a.g.l), which is one of the inlet heights at which VOCs were 

measured. Thus, GHG and CO measurements from the 91 m a.g.l inlet height were paired with 

PTRMS-derived VOC measurements from the nearest inlet height (131 m a.g.l) to create the 

unified GHG-VOC data matrix. Past inverse dispersion studies at the Walnut Grove tower have 

utilized CH4 and N2O observations from the 91 m a.g.l inlet (Jeong et al., 2012 a,b), and thus we 

also chose this height to be consistent with previous work. In chapter 5 we describe inverse 

analysis done for the same time period on GHG data measured from the 91 m.a.g.l inlet (same as 

PMF analysis) and a comparison of results from these approaches is provided in chapter 6.  
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 The choice of sampling heights and the use of data collected over full diurnal cycles 

affects the spatial region where the PMF analysis is sensitive. This is because the spatial domain 

over which a PMF analysis accurately represents emissions is a function of meteorology and 

areal distribution of emission sources (Guha et al., 2015). Following previous work, we assume 

that the PMF technique is best utilized to apportion local sources at distances of < ~ 50 km radius 

from the tower.  In particular, this implies that the PMF is unlikely to provide sensitive 

attribution for weak local sources that will be enveloped in signals from strong local, or sources 

that are carried by winds from significant distances and do not produce a strong diurnal variation 

in signal at the site because the diurnal variation in boundary layer depth at the site is no longer a 

strong factor controlling signal strength.   

4.1.5   Background concentrations of GHG, CO and VOC tracers 

Background concentration time series for each tracer were determined based on 

interpolated running 10 day 0.05 quantile curves at the measurement height (91 m a.g.l) chosen 

for PMF analysis (read below) and subtracted from the mixing ratio time series to generate 

enhancements of individual VOCs at each hourly time stamp. For three tracers that had a 

relatively short life-time of the order of few hours or less, e.g. isoprene, methyl vinyl ketone plus 

methacrolein (MVK / MAC), and, monoterpenes, no background was assumed (0 ppt). All the 

other VOC tracers in the PMF study had variable season-dependent atmospheric lifetimes that 

range from a few days (e.g. toluene in summer) or longer and their backgrounds can be a 

significant percentage of the absolute mixing ratios (e.g. benzene in winter). CH4, N2O and CO, 

have longer lifetimes than the VOCs in this study and have background curves which either have 

a seasonality (like CH4 and CO) and / or are steadily increasing with time (e.g. N2O). The 

sources of CH4, N2O and CO are predominantly primary (not secondary production) and surface-
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based hence for these three tracers, the running 10 day 0.05 quantile curve at the upper height 

(483 m a.g.l) was assumed as the background for 91 m a.g.l.  

The enhancements in each time series were scaled by applying scaling coefficients (SC). 

This scaling process allowed for a consistent scheme to represent tracers with vastly different 

absolute concentrations (e.g. high ppb scale for CH4 vs low ppt level for monoterpenes) and 

improve the visual attributes of PMF output plots to follow. The scaling coefficients were 

determined to assure that variability of all input data for each species was comparable. The 

background-adjusted mixing ratio enhancements are used as the input data (xij) in the PMF data 

matrix.  

		 	 	 	  ,  if xij > LOD                         (4a)               

 
		 	 	 2⁄    ,   if xij < = LOD                                                                   (4b)             

 
		 	 	   , if xij is not known                                                                (4c)             

 
where SC –scaling coefficient; LOD –limit of detection; GM – geometric mean. 
 

For each tracer time series, there are small enhancements below the limits of detection 

(LOD, see next section) and also negative enhancements arising from concentrations whose 

values fall below the interpolated background curves. In these cases xij was assumed to be 

half the value of LOD.  

4.1.6   Uncertainty matrix 

To determine the uncertainties associated with data at each time stamp for each tracer, 3σ 

limit of detection (LOD) for hourly averaged data were determined for each tracer from the raw 

data. For the VOCs, guidelines set forth by Williams et al. (2010) were adopted to calculate the 
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uncertainty estimates.  An analytical uncertainty (AU) of 10 % combined with above-mentioned 

limits of detection (LOD) was used to calculate the total uncertainty for each xij: 

	 	≡ 	 	 	 	 	
.

,   if xij  > LOD,                                                            (5a)  

	 		≡ 	 	 	 2	
.

,  if xij  <= LOD                                                               (5b)

	≡ 	10	 	   ,  if xij  is not known                                                                                     (5c)   

 

Using this approach, the detection limit dictates the errors for small enhancements (~ 

LOD) while errors for larger enhancements in the time series are tied more to the magnitude of 

the data value (xij) itself. To maintain the robustness of PMF analysis, outliers, missing values 

and below detection limit values were selectively down-weighted by increasing their uncertainty 

in proportion to the uncertainty of other data points. 

The impact of different levels of uncertainty that arise from using different instruments 

based on unique scientific techniques (e.g. laser spectrometry versus chemical ionization) has 

been noted to be significant in determining the quality of fit of the PMF model to the data from 

the respective instruments. Slowik et al. (2010) have reported that differences in signal-to-noise 

ratio of different instruments do lead to PMF solutions being skewed and biased. The GHG and 

CO measurements have high precision and significantly lower detection limits than ambient 

levels. The relatively low values of uncertainties in the GHG data, compared to VOCs, are 

substituted with those calculated using a custom approach. The GHG and CO uncertainties are 

assumed to be proportional to the square root of the data value and an arbitrary scaling factor 

was determined through trial and error to produce lower values of Q Qexp
-1: 

							 	≡ 		 	
.

, (6) 

where A = 1 (for CH4 and CO), 2 (for N2O) 
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This method attributes larger percentage uncertainties to smaller enhancements and hence 

lesser weight in the final solution and vice versa. This approach leads to an uncertainty matrix 

that attributes relatively similar percentage errors to both GHGs and VOCs, which should lead to 

a better fitting of the data in PMF. This is also experimentally verified through numerous PMF 

iterations (not shown here) where assigning comparable uncertainties to both GHG and VOC 

input data is observed to provide PMF solutions that have more a more balanced representation 

of species from all instruments in the output factor profiles. 

Missing values are replaced by the geometric mean of the tracer enhancement time series 

and their accompanying uncertainties are set at ten times this geometric mean (Polissar et al., 

1998) to decrease their weight in the solution. Based on the a priori treatment of the entire input 

data (scaling) and the corresponding outputs of the PMF analysis, a weighting approach (for 

measurements from different instruments) as used in (Slowik et al., 2010) is not found to be 

necessary. 

4.1.7   PMF factor number, rotations and error analysis 

A detailed account of how to arrive at a user-defined optimal PMF solution, rotations of 

factors to generate factor profiles with higher degree of plausibility albeit at a higher “quality of 

fit” parameter Q value, and bootstrapping analysis to determine quantitative uncertainties of the 

chosen PMF solution is described in Section 2.2.6 of the PhD dissertation of a co-author in this 

report (Guha et al., 2014). We will avoid repeating those details here but instead summarize the 

overall procedures performed for each of the seven different PMF analyses. Specific results of 

these operations, if relevant, are reported in the description of the PMF results in Section 4.3.  
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PMF factor numbers (p) were explored from 1-8 for each PMF analysis to determine the 

optimal or “best explained” combination of factor profiles. Care was taken to avoid considering a 

p-factor solution where a clear splitting of an existing factor from a (p-1)-factor solution into two 

resulting factors was observed, such that the two factors in the p-factor solution had similar 

diurnal profiles and time series but with different constituents. At each p, different random 

starting points (SEEDs) were tested (from 1-10) to find the local minimum of a particular p-

factor PMF solution (Paatero, 1997). This gave a better idea of the existence of additional “real” 

factors in the ultimate solution.  The rotational ambiguity was explored using the FPEAK 

parameter that was varied from -1.0 to +1.0 at 0.2 unit increments without changing p to explore 

solutions which may present more physically realistic combinations of factor profiles (Paatero et 

al., 2002) as opposed to that in the base solution (at FPEAK = 0). It should be noted that there 

were a maximum of 13 tracers in certain PMF runs but when N2O and/or MeOH were missing 

completely, these tracers were not included in the PMF analysis for that seasonal period, hence 

decreasing the actual number of included tracers (Table 3.1). This directly impacts the degrees of 

freedom in each successive higher p-factor solution. Such high p-factor solutions may have a 

significantly lower Q but may represent apportionment of individual tracers completely and 

exclusively to separate factors that does not make physical sense and defeats the purpose of 

performing PMF analysis. Hence, we are cautious in considering and accepting solutions at 

higher numbers of factors unless they make clear physical sense to the analyst and can be 

attributed to a source category.  

In traditional PMF literature, uncertainties in mass fractions derived from PMF analysis 

are often not reported at all. A detailed description of how the uncertainty in the relative 

apportionment of a particular tracer, say CH4, in a specific source factor is calculated for this 
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study can be found in related work of the authors (Section S3; Guha et al., 2015). A 

bootstrapping analysis of the chosen p-factor solution was performed (Norris et al., 2008; 

Ulbrich et al., 2009) with 100 runs. The 1-sigma standard deviation of the mean mass fraction of 

a tracer (e.g. CH4) in a particular source factor, for a particular season, calculated from 100 

bootstrapping runs is reported as ‘uncertainty’ in the abstract and the rest of this chapter (Section 

4.2.2). The percentage range for CH4 and N2O that is also reported throughout the text, for each 

source type and for each season, is not related to the uncertainties calculated using the bootstrap 

runs. The percentage range reported originates from the source-apportioned time series of  hourly 

samples computed by using the CH4 and N2O mass fraction from each factor profile for a chosen 

p-factor solution. This range often demonstrates the variation of the tracer concentration 

typically observed in each season due to meteorological and diurnal variations.  

4.2. Results and Discussion 

4.2.1. Description of PMF source factors 

     In this sub-section, we present the composition of the different factors that result from 

the PMF analysis on seven individual sampling periods from June 2012 to Aug 2013 at WGC. 

The PMF source factors are statistical combinations of co-varying signal contributions and as 

such, covariance due to diurnal changes in vertical mixing and shifts in wind direction may result 

in contributions of coincidentally located sources being apportioned to the same source factor. 

This is also known as factor ‘splitting’ and ‘mixing’ and has been discussed in Section 2.2.6 in 

Guha et al. (2014). Our choice of source factor nomenclature reflects our interpretation of the 

dominant source contributions to the composition of each factor resulting from VOC source 

marker evaluation, comparison of relative emission rates and diurnal trends. The factors reveal a 
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break-down of the major CH4 and N2O source categories that can be deconstructed from the 

input data matrix based on the input uncertainties ascribed to each data value in the time series. 

For each sampling period related to a particular season, we identify the number of factors 

in the ‘best case’ PMF solution based on the guidelines in Guha et al. (2014). The PMF source 

factors that were observed  at WGC in different seasons over the 2012-13 annual cycle were 

‘Dairy and Livestock’,  ‘Urban + Oil and Gas’, ‘Primary Biogenics and Secondary Organics’, 

‘Agriculture + Soil Management + Delta’, ‘Fresh Isoprene’,  ‘Isoprene Oxidation products’ and 

likely ‘Forest Fires’ (see Summer 2012; Section 4.2.2). In the following paragraphs, we list and 

describe all the source factors that make up the factor profiles resulting from one or multiple 

PMF analyses. The specific factor profiles resulting from the apportionment of each unique 

seasonal PMF run are shown in Figures 4.4, 4.6, 4.8, 4.10, 4.12, 4.14, and 4.16.  

 
Dairy and Livestock emissions 
 

     This source factor is represented in all plots and figures in orange color. The major 

contributors to this factor are CH4 and N2O (whenever included in the PMF analysis). This factor 

contains some contributions from oxygenated VOCs like methanol, acetaldehyde, acetone + 

propanal and MEK in seasonally varying proportions over the seven PMF periods. These VOCs 

have been reported to be emitted from various processes within dairy and feedlot operations in 

significant quantities (Filipy et al., 2006; Shaw et al., 2007; Ngwabie et al., 2008; Chung et al., 

2010). The presence of methanol in this factor points to the essentially biological origin of 

emissions from this source as opposed to a combustion / fugitive source. This source factor is a 

minor contributor to the enhancements of the included aromatics (benzene and toluene) and 

combustion tracer CO. The minor contributions of aromatics to this source have been detected in 
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all the above-mentioned studies. The m/z 93 can also potentially be a fragment from 

monoterpenes as opposed to toluene. The CO can also result from the large-scale industrialized 

nature of dairy agriculture in the Central Valley where a lot of commercial motor-driven 

equipment is used. The MeOH / CH4 (mmol mol-1) relative emission rates (ER) derived from 

different seasonal ‘dairy and livestock’ factor profiles in this study range from 3.4 to 9.3. This is 

in general agreement with emission rates reported from dairy and feedlot studies in Table 2.4 in 

of Guha et al. (2014). Particularly, our range of observed emission rates show conformity with 

cow chamber studies (Shaw et al., 2007), regression slopes from dairy plumes measured by 

aircraft (Gentner et al., 2014a) and the lower end of slopes observed in flights over the Central 

Valley in Figure 3.12b of Guha et al. (2014). The N2O / CH4 emission rate range of 2.8 – 12.8 

(mmol mol-1) over four different seasonal PMF periods in this study is similar to that of the dairy 

and livestock factor in the PMF analysis at Bakersfield of 5.5 mmol mol-1 (Chapter 2; Guha et 

al., 2014). Hence, we demonstrate that the principal contributor to the orange factor is emissions 

from intensive dairy and livestock operations surrounding WGC and CH4 and N2O are the 

principal constituents of this source factor.  
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Figure 4.1. Mean diurnal distribution (x-axis) of CH4, combustion tracer CO and aromatic VOCs showing interpolated vertical profiles across all measured 
heights (y-axis) during different seasons at WGC. The color axis represents the mixing ratio of each compound. Species shown include (a-d) CH4, (e-h) CO, (i-l) 
benzene, and (m-p) toluene. The x-axis of each figure lists the season for which the concentrations have been plotted. The horizontal dotted lines in each plot 
represent the height (m a.g.l) on WGC at which the measurements are made. 
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Urban and Oil & Gas emissions 
 

This source factor is represented in black color in all factor profiles and diurnal 

distribution plots. This source factor is by far the dominant source of CO and aromatics like 

benzene and toluene. This suggests that the sources contributing to this factor have an imprint of 

combustion-related emissions. The rural location of WGC and absence of any major highways 

immediately upwind of the site suggests that these emissions are not dominated by a local 

vehicle combustion source. This can also be deduced from the toluene to benzene molar ratios 

reported in Table 4.1 which is used as an indicator of traffic emissions. A range of 1.5 to 4.3 

(mol mol-1) has been suggested as typical emission ratios of toluene to benzene from fresh 

plumes in various urban environments  (Warneke et al., 2007; Baker et al., 2008; Liu et al., 2009; 

Bon et al., 2011; Borbon et al., 2013; Lan and Minh, 2013). Photochemical aging of a fresh 

plume depletes emitted toluene faster than benzene owing to the difference in their OH radical 

rate constants, the OH removal process being the principal atmospheric loss mechanism for these 

aromatics (Gelencsér et al., 1997; Warneke et al., 2007). Hence, toluene / benzene ratios are 

expected to decrease with time (distance) from the source and, as a consequence, be lower in 

rural environments than in urban environments as seen in a study conducted at multiple urban 

and rural sites located unique traffic-equivalent distances (hours) apart (Gelencsér et al., 1997). 

The range of toluene/benzene ratios we observe in this PMF factor is 0.4 – 1.1 (with lower end of 

the ratios during winters) which is significantly less than typical urban emission ratios and 

gasoline-speciation profiles observed in Table 4.2. This indicates that a significant contribution 

to aromatics and CO attributed to this factor may be emitted from sources in the upwind urban 

regions in the outer San Francisco Bay Area that get photochemically depleted (more toluene 

depletion versus benzene depletion) as they are transported to WGC and hence the difference in 
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Table 4. 1. Comparison of PMF urban and oil / gas source factor benzene and toluene emission ratios relative to 
carbon monoxide with those derived from urban measurements and gasoline speciation profiles. Relative emission 
ratios of toluene to benzene are also included as an indicator of aging of emission plumes arriving at WGC.  

Study Source benzene / CO  
(pptv ppbv-1) 

toluene / CO  
(pptv ppbv-1) 

toluene / benzene 
(pptv pptv-1) 

WGC  
PMF urban and 
oil/gas factora 

This study 1.1 - 1.8 0.4 - 1.5 0.4 - 1.1 

Mexico city  
2006 

Bon et al. 
(2011) 4.2 ± 0.4 1.21 ± 0.06 3.5 ± 0.4 

CalNex Los 
Angeles ambient 
emission ratiosb 

Borbon et al. 
(2013) 1.30 3.18 2.40 

New England  
2004 

Warneke et 
al. (2007) 0.62 2.62 4.2 

28 US cities  
(1999-2005)c 

Baker et al. 
(2008) 0.7 2.7 3.9 

Berkeley 
liquid gasoline 

speciation 2010d 

Gentner et al. 
(2012) NA NA 9.708 ± 1.375 

Berkeley 
evaporative 

gasoline speciation 
2010e 

Gentner et al. 
(2012) NA NA 2.906 ± 0.246 

a Range of mean ratios over seven unique PMF experiments for different seasonal periods. 
b Derived from Linear Regression Fit slope of scatterplot from CalNex Pasadena supersite samples. 
c Ratios represent average of emission ratios from 28 cities.  
d Ratios calculated from Table S9, Gentner et al., 2012; uncertainties are ± standard deviation. 
e Ratios calculated from Table S11, Gentner et al., 2012; uncertainties are ± standard deviation. 

the observed emission rates originate from a multitude of sources including five O&G refineries 

in the North Bay area (< 60 km from WGC), a couple of landfills, fugitive emissions from urban 

natural gas pipeline distribution network etc. 
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The largest natural gas producing field in California, Rio Vista, is located about 15 - 25 

km south-west of WGC. It is possible that the emissions contributing to this factor are 

predominantly from industrial operations in this field and the associated CH4 is due to fugitive 

losses. A large enhancement of CH4 (up to 120 ppb) was observed while flying over this field 

during the CABERNET campaign (Section 3.2.2; Guha et al., 2014) pointing to fugitive 

emissions that could very well be responsible for the CH4 apportioned to this factor. 

Additionally, no N2O is present in the chemical profile in even minor fractions which adds 

weight to the possibility of the ‘black’ factor being dominantly an Oil and Gas fugitive + 

combustion source. In a measurement study of VOCs and CH4 in 43 Chinese cities, significantly 

higher CH4 mixing ratios were observed in 15 cities where toluene / benzene ratios were < 1 

(mol mol-1) and not typical of the 10 “traffic-related cities” where the ER was ~ 1.7 or higher 

(Barletta et al., 2005).  Additionally, the abundance of light alkane fraction of ethane (associated 

with natural gas leakage), relative to other hydrocarbons, was significantly higher in these 15 

cities. This suggests that fugitive CH4 emissions along with VOC emissions from related natural 

gas extraction process at the Rio Vista field is likely to have lower toluene / benzene ratios in 

line with our observations in this factor. In the absence of measurements of light alkanes like 

ethane and propane which can serve as excellent source tracers for fugitive CH4 emissions from 

the O&G sector, it is difficult to verify and validate the exact source / origin of the emissions 

contributing to this factor. Lower toluene / benzene ratios (< 1) have also been reported from 

biofuel / wood burning (~ 0.58), forest fires and agricultural residue burning (~ 0.82) (Andreae 

and Merlet, 2001; Jordan et al., 2009). Since upwind emissions plumes from the Bay Area will 

always flow over the gas field and croplands before arriving at WGC, we conclude it is best to 
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define this source factor as a combination of fugitive / combustion emissions from the urban core 

and the O&G sector.  

Secondary production of acetaldehyde from photo-oxidation of light alkanes is the largest 

global source of acetaldehyde (Millet et al., 2009) and a minor source of acetone (Goldstein and 

Schade, 2000; Schade and Goldstein, 2006; Hu et al., 2013). Urban / O&G plumes are likely to 

contain light alkane emissions and hence, expectedly, we see acetaldehyde and some acetone 

apportioning on to this factor. This source factor also contains some contributions of m/z 42 

which are potentially alkanes emitted into the polluted plumes arriving at WGC. In winters, this 

factor sees some anthropogenic contributions on masses that have traditionally dominant 

biogenic contributions in summers. Some m/z 69, which is predominantly isoprene in summers, 

apportions on to this factor. These are mostly contributions from pentadienes and cyclopentenes 

which are by-products in petroleum industry plumes. Similarly, m/z 137 contribution during 

winters is from known anthropogenic monoterpenes while m/z 71 potentially contains 

contributions from refinery by-products like pentenes and 2-methyl-2-butene. No methanol is 

apportioned to this factor in any seasonal PMF analysis.  

Primary Biogenics and Secondary Organics 
 

This source factor is one of the three that is produced in all of the seven PMF evaluations 

and is shown in green color in all plots. This source factor is the dominant contributor of 

oxygenated VOCs all of which have major primary biogenic and secondary photochemical 

sources surrounding WGC. This includes methanol (Baker et al., 2001; Schade and Goldstein, 

2001, 2006; Harley et al., 2007; Hu et al., 2011), acetaldehyde  (Kesselmeier and Staudt, 1999; 

Karl et al., 2002), acetone ( Kirstine et al., 1998; Goldstein and Schade, 2000; Hu et al., 2013) 

and methyl ethyl ketone (Kirstine et al., 1998; de Gouw et al., 1999). A number of studies have 
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Figure 4.2. Mean diurnal distribution (x-axis) of oxygenated VOCs showing interpolated vertical profiles across all measured heights (y-axis) during different 
seasons at WGC. The color axis represents the mixing ratios of each VOC. Species shown include (a-d) methanol, (e-h) acetaldehyde, (i-l) acetone, and (m-p) 
methyl ethyl ketone (MEK). The x-axis of each figure lists the season for which the concentrations have been plotted. The horizontal dotted lines in each plot 
represent the height (m a.g.l) on WGC at which the measurements are made. There were no methanol measurements in the winter season at any height (Figure c).
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reported significant fluxes of these compounds from Central Valley agriculture (Fares et al., 

2011, 2012; Park et al., 2013). The diurnal profiles of these oxygenated VOCs (Figure 4.2) are 

generally consistent with that from year-round measurements at a largely rural site in New 

Hampshire (Jordan et al., 2009). The vertical profiles in Figure 4.2 and diurnal cycle in Figure 

4.10c indicates that these compounds are predominantly produced from local ground-based 

sources with maximum emissions during daytime. As mentioned in Section 3.1, the region 

surrounding WGC is predominantly farm land with a variety of cultivated crops.  Primary 

biogenic VOC emissions from nearby agriculture reach a maximum during the day.  Secondary 

VOCs produced from surrounding biogenic precursor sources are primarily photochemically-

driven so would also peak during daytime. Prevailing daytime winds arriving at WGC contain a 

combination of these two above-mentioned categories of emissions (Figure 4.2). There is no 

noticeable apportionment of CO, aromatics and acetonitrile to the factor profile and this confirms 

the majorly biogenic nature of the sources influencing this factor. There is no CH4 and N2O 

(except in summer 2013 PMF; Section 4.2.2 and explained later) apportioned to this factor. This 

is an expected outcome, based on our knowledge of CH4 and N2O emissions sources.  

The rise and decline of the peak enhancements at the measurement height (131 m a.g.l) 

occur at slightly different times for different oxygenated VOCs e.g. the peak of methanol during 

summers (Figure 4.2 a) occurs at 1100 PST, which is one hour after the peak occurs for 

acetaldehyde (Figure 4.2 e) but a couple of hours before peak concentrations are achieved for 

acetone (Figure 4.2 i). Different emission mechanisms and biological triggers within the plant 

system have been previously proposed. For instance, large methanol emissions result from leaves 

controlled by opening and closing of the stomata (Harley et al., 2007; Hüve et al., 2007) and 

higher methanol emissions occur due to pectin-hardening during stages of rapid plant growth 
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(Galbally and Kirstine, 2002; Hüve et al., 2007) in late spring/early summer. Also, acetaldehyde 

is released throughout the day in forest canopies under varying light conditions (Karl et al., 

2002), while MEK is the largest VOC released from grass and clover pastures (Kirstine et al., 

1998) located farther from the site compared to crop lands (Figure 3.1) followed by methanol 

and acetone. Acetone can be emitted from primary biogenic emissions that are light and 

temperature dependent and simultaneously occur from photochemical production thus peaking in 

mid to late summer time (Hu et al., 2013; Jacob et al., 2002; Schade and Goldstein, 2006). The 

apportionment through PMF analysis is based on simultaneous linear covariance of 

enhancements.  At WGC, differences in release mechanisms of the oxygenated VOCs from their 

biogenic sources and photochemical reaction rates lead to staggering of diurnal timelines. In 

spite of this, the collective similarity in the non-linear enhancement features in the diurnal 

profiles result in major portions of oxygenated VOC signals being apportioned to a common 

source factor which we describe as ‘Primary Biogenics and Secondary Organics’.  

Even during winters, agricultural residues in the post-harvested fields, and potential 

double cropping may result in some biogenic emissions that lead to this factor appearing in the 

PMF analysis even as other biogenic / agriculture related factors are not identified (Figure 4.8).   

 
Agriculture + Soil Management + Delta emissions 
 

This source factor is represented in purple color in all factor profile and PMF diurnal 

distribution plots.  This factor is a major contributor to N2O enhancements in all seasonal PMF 

runs where N2O is measured and included.  In addition, most of the monoterpene emissions (m/z 

137) are attributed to this factor along with minor contributions of oxygenated VOCs (OVOCs), 

isoprene and MVK / MAC, all of which have mostly biogenic sources around WGC. A similar 
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factor was observed in the PMF analysis at Bakersfield (Section 2.3.2 and Figure 2.7; Guha et 

al., 2014). In this source factor, we principally see microbially-mediated soil emissions of N2O 

arising from the use of synthetic and organic fertilizers on nearby agricultural farmlands that 

include corn, a variety of fruits and vegetables and large swaths of rice agriculture (~ 100 km 

from WGC), all of which require N fertilizer input (van Groenigen et al., 2010; Hoben et al., 

2011; Linquist et al., 2012; Rosenstock et al., 2013). As discussed later in Section 4.2.2, the N2O 

signal apportioned to this factor varies seasonally and depends on the annual cycle of agriculture 

and corresponding use of fertilizers. Collocated with the soil N2O emissions are minor VOC 

contributions from agricultural crops. The emissions of N2O are primary in nature and result in 

minor enhancements above a large tropospheric background. The diurnal profile is mostly 

governed by daytime dilution in an increasing volume of the expanding boundary layer followed 

by accumulation of emissions in the shrinking boundary layer and night time inversion (Figure 

4.3 i-l). The emissions of OVOCs from crops, on the other hand, are dependent on various 

factors with a major exponential dependence on temperature (and in some cases light) and vary 

non-linearly. Hence the majority of crop OVOC emissions get apportioned to the ‘green’ factor 

profile (F) with exponentially varying factor contributions (G) in the time series. In addition to 

this, minor contributions of primary OVOCs co-vary with collocated emissions due to boundary 

layer dynamics rather than temperature and light dependence. These contributions, mostly minor, 

also help explain the reconstructed PMF time series and get apportioned to the ‘purple’ factor. 

This ‘purple’ factor would contain other similarly varying tracers in the air parcels that arrive at 

WGC simultaneously e.g. coincident emissions of N2O and monoterpenes. Biogenics like 

monoterpenes (m/z 137) are emitted from crops and have a diurnal profile, which is different 

from other oxygenated VOCs (explained in the next section). Its diurnal profile is, however,  
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Figure 4.3. Mean diurnal distribution (x-axis) of primary and secondary biogenic VOCs along with N2O showing interpolated vertical profiles across all 
measured heights (y-axis) during different seasons at WGC. The color axis represents the mixing ratios of each VOC. Species shown include (a-d) isoprene, (e-h) 
methyl vinyl ketone (MVK) + methacrolein (MAC), (i-l) N2O, and (m-p) monoterpenes (m/z 137). The x-axis of each figure lists the season for which the 
concentrations have been plotted. The horizontal dotted lines in each plot represent the elevation (m a.g.l) on WGC at which the measurements are made. N2O 
was not measured at 30 m a.g.l, hence measurements begin at 91 m a.g.l.  
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similar to that of N2O and a major proportion of the monoterpene enhancements are apportioned 

to this source category.  

This source factor also contains some contributions from m/z 93 which is calibrated to 

toluene in this experiment. The m/z 93 diurnal profile (named toluene in Figure 4.1 m) is similar 

to that of N2O (Figure 4.3 i) and monoterpenes (Figure 4.3 m) during the summer season. The 

diurnal profile of benzene (Figures 4.1 i-l) and CO (Figures 4.1 e-h) are similar to each other in 

all seasons. But a comparison with seasonal diurnal profiles of toluene (Figure 4.1 m-p) reveals 

that in the summer season, the diurnal profile of toluene is quite different. This points to an 

additional summertime source of toluene (or another VOC detected on m/z 93) that masks the 

general expected non-biological emission profile of toluene similar to that of benzene and CO if 

they had completely similar emissions sources. This additional enhancement is coming from the 

‘purple’ source factor. Similar observations at a rural site in New Hampshire have been observed 

for summertime toluene and local vegetative emissions have been estimated to have a significant 

contribution to the enhancements (White et al., 2008). Some methanol also gets apportioned to 

this factor. Methanol, monoterpenes and toluene emissions from corn and corn harvesting has 

been reported to be significant (Graus et al., 2013) with some minor emissions of benzene. 

Methanol and monoterpenes are also emitted in significant quantities during harvesting of 

managed grasslands (Ruuskanen et al., 2011). The region around WGC has a lot of corn 

plantations and large areas at the edge of the Delta are managed grasslands and pastures (Figure 

3.1). The literature on the emissions of the above-mentioned VOCs conforms well to our 

observed chemical apportionment of this factor. Monoterpenes are stored by plants in storage 

pools and are released in large amounts during damage and stress (like during harvesting and 

early growth). We find that mass fraction of monoterpenes attributed to this factor is 
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significantly larger in the PMF apportionments during early fall and late fall seasons (Figures 4.4 

and 4.6), which coincide with the harvesting season and also during early spring (Figure 4.10), 

which coincides with the planting season. This reaffirms the agricultural origin of this source 

factor. A small mass fraction of CH4 is apportioned to this factor. Most of the upwind regions 

around WGC are part of the Sacramento – San Joaquin Delta and as such, contain large tracts of 

lands that are periodically flooded and drained like peatland pastures, natural and restored 

wetlands, and some rice agriculture (Figure 3.1). This land cover is ubiquitous and coterminous 

with agricultural farm lands and as such, any GHG and VOC emissions from the two above 

mentioned land-types is coincident in the plumes arriving at WGC. If the diurnal profile of these 

emissions is essentially controlled by boundary layer dynamics and meteorology, these emissions 

will be attributed to a common factor even though they may represent separate source categories. 

CH4 (as well as N2O) fluxes have been reported from a variety of flooded / drained ecosystems 

in the Delta like restored wetlands, peatland pastures and rice cultivation (Teh et al., 2011; 

Hatala et al., 2012; Knox et al., 2014). Hence, we explain the origin of the methane attributed to 

this factor as that coming from anaerobic mechanisms (both man-made and natural) in the Delta 

region around WGC. We understand that this factor is influenced by an aggregation of these 

collocated sources and best represented by a statistical combination of their contributions as a 

unique factor in the PMF analysis and we therefore define this source factor as ‘Agriculture + 

Soil management + Delta’.  

 
Fresh Isoprene emissions 
 

This factor is highly seasonal, and is observed as an output of PMF analysis in the late 

spring, summer and early fall. This factor is represented in ‘light blue’ color in the plots. This 
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factor mostly contains fresh isoprene emissions with minor contributions from oxygenated 

VOCs. The diurnal profile of isoprene has a peak during the day and the concentrations reach a 

low during the evenings and stay close to being negligible before beginning to rise in the 

morning again as seen in the diurnal profile plots for isoprene (Figures 4.3 a-d). Isoprene 

comprises a third of annual global VOC emissions from all natural and anthropogenic sources 

with > 90% of the emissions coming from terrestrial plant foliage (Guenther et al., 2006). 

Isoprene is mostly emitted by chloroplasts as a function of light and temperature (Steeghs et al., 

2004). Hence its emissions occur during the day and stop at night. Isoprene has a short lifetime 

(~ 1 h), as compared to some of the other coincident OVOCs, the reaction with OH radicals 

being its principal sink.  Due to differences in emission sources and loss processes such as 

chemical reactions, advection, and vertical dilution, isoprene almost exclusively gets apportioned 

to its own PMF factor. Emissions of isoprene are much higher in the summer time as compared 

to winter and early spring and hence this factor is not produced in those respective PMF runs. 

There is no CH4 or N2O attributed to this factor.  

Monoterpenes (Figure 4.3 m-p) have a different diurnal profile than isoprene with peak 

concentrations occurring in the night time / early morning and daytime minima. This is also 

observed in forest environments and rural agricultural locations alike (Bouvier-Brown et al., 

2009; Jordan et al., 2009; McKinney et al., 2011). Monoterpene emissions from surrounding tree 

crops (and nearby deciduous forests) and grasses are primarily a function of temperature (from 

stored pools within resin ducts) and not light. During the summer and fall, monoterpene 

emissions during the night time are enhanced due to warmer night time temperatures resulting in 

continued emissions that build up in a shallow boundary layer. 

Isoprene oxidation products 
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This source factor is represented in ‘navy blue’ color in the PMF-related plots. This 

factor principally contains methyl vinyl ketone (MVK) and methacrolein (MAC) (measured as a 

sum by PTR-MS), which are atmospheric oxidation products of isoprene. Hence, this factor is 

closely associated with the ‘fresh isoprene’ factor and shows up in the PMF apportionment only 

when isoprene emissions are significant, which occurs in the summer season only. The diurnal 

profile of MVK and MAC follows and lags behind the isoprene diurnal profile reaching peak 

concentrations around 1800 PST. A visual analysis of the observed diurnal concentration plots 

(Figures 4.3 e-h) reveal that a part of the MVK / MAC signal directly results from oxidation of 

locally emitted isoprene at the ground level while another part of the signal measured at 131 m 

a.g.l at WGC is a result of entrainment of advected MVK / MAC from upper levels at WGC (see 

Figure 4.3 e). This MVK / MAC prevalent at the upper levels of WGC is contained in oxidized 

biogenic plumes in the easterly downslope winds blowing from the oak forests along the foothills 

in the Sierra Nevada mountain range to the east of the site (Misztal et al., 2014). No observable 

CH4 or N2O is apportioned to this source factor or observed at the upper levels in the diurnal 

profiles of CH4 (Figures 4.5 a-d) or N2O (Figures 4.3 i-l). Hence it is clear that the biogenic 

plumes from the forested regions in the foothills do not have any CH4 or N2O imprint.  

4.2.2 Seasonal PMF results 

We herein present the relative strength of CH4 and N2O sources in the region as 

determined using PMF. One of the objectives of this analysis is to investigate the seasonal 

distribution of the relative contributions of major GHG sources over a complete annual cycle. 

We present the diurnal profiles of CH4 and N2O enhancements apportioned by source strength 

for each seasonal PMF analysis and discuss the reasons behind the variability in the relative 



 

86 
 

source strengths between seasons, if observed. As is seen in the seasonal absolute concentration 

diurnal plots (Figures 4.1 a-d, 4.3 i-l), both CH4 and N2O mixing ratios have a diurnal pattern 

resulting from primary sources that emit into an expanding boundary layer during the day time as 

atmospheric mixing increases, followed by a shallow boundary layer in stable atmospheric 

conditions during the nighttime. Observed absolute concentrations are lower in the summertime 

as boundary layers are deeper while wintertime concentrations are higher due to a shallower 

boundary layer. From the visual analysis of the source-apportioned relative diurnal distribution 

plots accompanying the absolute diurnal plots for each season, we do not observe a rectifier 

effect forcing of boundary layer dynamics on the PMF apportionment of CH4 and N2O 

enhancements as is typically observed in the correlation between diurnal / seasonal boundary 

layer dynamics and ecosystems CO2 fluxes. The relative contributions of a source to CH4 and 

N2O enhancements is driven by relative strengths of emissions sources in different seasons and 

meteorology (e.g. high westerly winds in summers versus low along-valley winds in winters).  

The GHG and VOC measurements were conducted over a complete annual cycle from 

mid-2012 to mid-2013 with data from the summers of 2012 and 2013 analyzed separately (Table 

3.1). Since, we do not have N2O measurements during summer 2012 (measurements of N2O only 

begin in mid-Oct), we consider the PMF apportionment during summer of 2013 to complete the 

annual cycle that begins in early Fall 2012. We do include the PMF analysis results from 

summer of 2012 in order to compare CH4 apportionment results from two consecutive summers 

and to evaluate any anomalies, if present. 

Early Fall 2012 (Sep 1 – Oct 15) 
 

A 6-factor solution is able to optimally describe the apportionment of GHGs and VOCs 

during the first half of fall 2012 as shown in Figure 4.4.  N2O was not measured during this 
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period. Most of the CH4 signal (~ 55 - 80 % ) is apportioned to the ‘dairy and livestock’ source 

depending on the time of day as seen in the PMF diurnal distribution plots in Figures 4.5 a and c. 

The uncertainty attached to the mean CH4 mass fraction of this factor from the bootstrapping 

analysis is +/-  9 %. The diurnal profile of reconstructed CH4 resembles that of emissions with 

primary sources whose concentrations vary with boundary layer depth and vertical mixing. The 

‘urban and oil/gas’ source is responsible for about 15 to 30 % of the daily enhancements with 

uncertainty in the mean CH4 mass fraction apportioned to this source from the bootstrapping 

analysis being about 46 %. It should be noted that both daytime and nighttime winds (Figures 3.2 

b and 3.3 b) are predominantly arriving from the west-southwest. This is expected to increase the 

influence of sources upwind of WGC, namely the urban core of San Francisco Bay Area and Rio 

Vista gas fields. The proportion of CH4 apportioned to the ‘urban and oil/gas’ source is less in 

the later seasons when winds are more multi-directional (Figure 4.9 c). A minor contribution to 

the CH4 enhancements (5 - 15 %) is also observed from the ‘ag soil and delta’ source factor with 

a relatively high uncertainty of 58 % in the mean CH4 mass fraction attributed to this source 

factor. Temperatures during this season are fairly warm and the emissions of CH4 from wetlands 

/ peatlands (and possibly rice agriculture) can certainly contribute to the CH4 observed in this 

factor. As is seen later in the PMF plots for seasons where N2O is included in the analysis (e.g. 

4.6 d), this source is a significant contributor to N2O enhancements. Most of the monoterpenes 

are essentially biogenic in nature (Bouvier-Brown et al., 2009) and are attributed to this factor. 

Monoterpenes have been reported to be emitted in significant quantities during the harvesting 

season (Ruuskanen et al., 2011; Graus et al., 2013) and this confirms the agriculture origin of this 

source. We distinguish this factor from the ‘primary biogenics and secondary organics’ source by 

including the PMF-based source-wise diurnal distribution of methanol (in Figure 4.9 b). This  
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Figure 4.4. Factor profiles of resolved PMF source factors denoting major source categories influencing the chemical composition of each profile during early 
fall of 2012 (Sep 1  –  Oct 16). The sum of the scaled mass fractions of all species adds up to unity for each profile. The VOCs with an asterisk sign may have 
minor contributions from other VOCs detected at the same m/z depending on the season (see text).
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Figure 4.5. Mean diurnal distribution plots apportioned by PMF generated source factors for early Fall 2012 period 
(Sep 1 – Oct 16). The plots include (a) source-wise distribution of methane enhancements above seasonal minimum, 
(b) source-wise distribution of methanol enhancements, and (c) source-wise distribution of methane enhancements 
by percentage. The legend represents the factor source categories of the 6-factor PMF solution for early Fall 2012.  
 

figure shows that the majority of emissions for methanol and oxygenated VOCs, which mostly 

apportion to this source, peak during day time. This is in contrast with the ‘ag + soil + delta’ 

diurnal profile (also shown in Figures 4.15 c-d) even though these sources are probably 

collocated. The multi-source apportionment of methanol in Figure 4.9 b shows that PMF can 

distinguish between different sources having varied influence on the measured signal depending 

on factors like timing of active source mechanisms, advection, meteorology etc.  

In summary, three sources of CH4 are identified in the fall 2012 PMF sampling period 

with ‘dairies and livestock’ as the dominant source, followed by the ‘urban and oil / gas’ source 

and a minor contribution from the ‘ag + soil management + delta’ source. 

Late Fall 2012 (Oct 16 – Nov 30) 
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          The apportionment of the latter half of the fall 2012 season can be best explained by a 4-

factor solution (Figure 4.6). As compared to the period preceding it (early fall 2012), 

temperatures drop significantly (Table 3.1) and hence the isoprene emissions decrease 

substantially to the extent that a separate source factor containing fresh isoprene emissions is not 

reproduced in the PMF analysis for this period. Consequently, there is no ‘isoprene oxidation 

products’ factor either in the solution. During this period, N2O was also measured at WGC. CH4 

is apportioned to two factors: the ‘dairy and livestock’ source which accounts for ~ 65 - 80% of 

the daily variation with the uncertainty from the bootstrapping analysis being about 9 % of the 

mean CH4 mass fraction for this source factor; and the ‘urban and oil/gas’ source which accounts 

for ~ 20 - 35 % of the observed enhancements (Figures 4.7 a and c) with 17 % uncertainty in the 

mean CH4 mass fraction for this source factor. As opposed to early fall, there is no contribution 

to CH4 enhancements from the ‘ag soil and delta’ source factor. This is most likely due to cooler 

temperatures during this period (Table 3.1) as average highs drop by about 8°C as compared to 

early fall season thus reducing production of  CH4 from wetland and drained agricultural systems 

in the Delta (Baldocchi et al., 2012; Hatala et al., 2012; Knox et al., 2014). Dairy and livestock 

operations, on the other hand, are a year round activity and even though CH4 emissions from 

manure management may be reduced during this relatively cooler period, the overall CH4 

enhancements resulting from this sector remain high and the dominant contributor to the CH4 

apportionment in the absence of other competing sources. Winds are more variable in this period 

(Figures 3.2 c and 3.3 c) and the contributions from local sources may be more important. This 

suggests that the ‘urban and oil / gas’ factor may contain significant contributions from the 

nearby Rio Vista gas field.  
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Figure 4.6. Factor profiles of resolved PMF source factors denoting major source categories influencing the chemical composition of each profile during late fall 
of 2012 (Oct 17  –  Nov 30). The sum of the scaled mass fractions of all species adds up to unity for each profile. The VOCs with an asterisk sign may have 
minor contributions from other VOCs detected at the same m/z depending on the season (see text).
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Figure 4.7. Mean diurnal distribution plots apportioned by PMF generated source factors for late Fall 2012 period 
(Oct 17 – Nov 30). The plots include source-wise distribution of methane enhancements (a) in ppb above seasonal 
minimum and (c) by percentage; source-wise distribution of nitrous oxide enhancements (b) in ppb above seasonal 
minimum and (d) by percentage, and (e) source-wise distribution of methanol enhancements above seasonal 
minima. The legend represents the factor source categories of the 4-factor PMF solution for late Fall 2012.  
 

For N2O, we observe that the ‘dairy and livestock’ sector is the largest contributor to N2O 

emissions accounting for ~ 80 % of the total daily enhancements (Figures 4.7 b and d) with less 

than 7 % uncertainty in the mean N2O mass fraction for this source factor in this season. The 

remaining N2O (~ 20 %) is mostly attributed to the ‘agriculture’ source factor, which is also the 

main source for monoterpene emissions, possibly resulting from the vast harvesting activity 

during  this season. The mean N2O mass fraction attributed to the ‘agriculture’ source factor has 

a large uncertainty of 90 % associated with it in the corresponding bootstrapping analysis. It is
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important to recognize that the relative amounts of these two sources will differ regionally, and 

may not be the same in the northern and southern ends of the Central Valley due to the relative 

distributions of dairy / livestock / fertilizer use. The N2O apportionment to the ‘dairy and 

livestock’ sector is somewhat higher than the proportion of N2O attributed to the dairy source in 

Bakersfield (Figure 2.11; Guha et al., 2014). In this case, this is likely due to less fertilizer input 

as the agricultural season winds down (Oct - Nov) which would significantly decrease the N2O 

emissions resulting from and attributed to the agricultural sector, as compared to the relatively 

unchanging N2O emissions from manure management in the dairy sector.  By that logic, we 

expect the proportion of N2O to be higher during the growing season and we visit this hypothesis 

in the later sections.  

Winter / Wet season (Dec 1, 2012 – Jan 29, 2013) 
 

During the winter season, a 3-factor PMF solution (Figure 4.8) is most suitable to 

describe the apportionment of CH4 and N2O (Figures 4.9 a-d). In the winters, there is 

substantially less active agriculture in the region as most of the crops have been harvested in the 

fall. This means that fertilizer use and subsequent N2O emissions from crop agriculture should be 

negligible. Additionally, low temperatures in the inland Central Valley (Table 3.1) means that 

microbially mediated CH4 emissions from wetlands and peatland pastures should be low too and 

possibly below the level of detection within the framework of input uncertainties. This 

hypothesis is validated in the PMF solution as it does not reproduce the ‘agriculture + soil 

management + delta’ source factor from the previous period. The CH4 enhancements (Figures 

4.9 a and c) are predominantly attributed to the ‘dairy and livestock’ source which accounts for ~ 

90 % of the enhancements with a bootstrapping uncertainty of only 7 % in the mean CH4 mass 

fraction. The remaining 10 % of the emissions come from the ‘urban and oil / gas’ source with a 
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Figure 4.8. Factor profiles of resolved PMF source factors denoting major source categories influencing the chemical composition of each profile during winter / 
wet season (Dec 1 – Jan 29). The sum of the scaled mass fractions of all species adds up to unity for each profile. The VOCs with an asterisk sign may have 
minor contributions from other VOCs detected at the same m/z depending on the season (see text). 
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Figure 4.9. Mean diurnal distribution plots apportioned by PMF generated source factors for winter (wet season) 
period (Dec 1 – Jan 29). The plots include source-wise distribution of methane enhancements (a) in ppb above 
seasonal minimum and (c) by percentage; source-wise distribution of nitrous oxide enhancements (b) in ppb above 
seasonal minimum and (d) by percentage. The legend represents the factor source categories of the 3-factor PMF 
solution for this season.  

 

relatively high uncertainty of 45 % in the mean CH4 mass fraction used to compute the 

contribution of this sector. This is a reasonable outcome as the dominant wind direction during 

the winters is along the floor of the Central Valley (northwest and southeast) as seen in Figures 

3.2 d and 3.3 d. The prevailing winds causes the densely concentrated dairy and feedlot complex 

in the San Joaquin County (to the southeast of the site) to become directly upwind of the site for 

majority of this period. The above-mentioned reason coupled with reduced or almost absent 

contributions from agriculture related N2O emissions causes the observed N2O enhancements to 

be almost exclusively attributed to the dairy and livestock sector (Figures 4.9 b and d). A very 

tiny (< 5 %) of the emissions are attributed to the ‘biogenics’ factor and this may be related to 

precipitation-driven N2O release from left-over soil N on fallow crop lands in the post-harvesting 
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period or a small amount of ongoing regional agricultural activity, although this contribution is 

well-within the bounds of uncertainties ascribed to the N2O data.  

Late Winter / early Spring season 2013 (Feb 15 – Apr 5) 

The source apportionment during late winter and early spring period is best described by 

a 4-factor PMF solution for this period (Figure 4.10) which resembles a similar factor solution 

observed during the late fall period (Figure 4.6) with the exception that N2O was missing from 

the input data set during this period. The diurnal plots of the scaled factor mass distribution 

(Figures 4.11 a-d) give a glimpse into the differences in the diurnal patterns which PMF analysis 

is able to suitably resolve. We observe that even though the ‘dairy and livestock’, ‘urban and oil / 

gas’ and the ‘agriculture and delta-related’ sources have early morning peaks in concentrations 

followed by daytime lows (Figure 4.11 a, b and d, respectively), there are finer differences in 

their diurnal profiles (like timing of peaks and lows), which allow the PMF tool to analyze and 

resolve these non-covarying features in the time series, and apportion combinations of tracers 

with similar features into distinct factors. Also, the ‘primary biogenics and secondary organics’ 

source has peak concentrations during the early afternoon period coincident with periods of 

highest temperature and sunlight received (Figure 4.11 c) and this reaffirms our understanding of 

the biogenic origin of this source factor. 

The bulk of the CH4 (~ 60 - 70 %) enhancements are attributed to the ‘dairy and 

livestock’ source with less than 10 % uncertainty in the CH4 mass fraction apportioned to this 

source. Smaller contributions are observed from the ‘urban and oil / gas’ source (~ 20 %; 

standard deviation of 78 % in the average CH4 mass fraction) and the ‘ag soil management + 

delta’ source (15 - 25 %; standard deviation of 40 % in the average CH4 mass fraction) in Figures 
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Figure 4.10. Factor profiles of resolved PMF source factors denoting major source categories influencing the chemical composition of each profile during winter 
/ early spring of 2013 (Feb 16  –  Apr 4). The sum of the scaled mass fractions of all species adds up to unity for each profile. The VOCs with an asterisk sign 
may have minor contributions from other VOCs detected at the same m/z depending on the season (see text). 
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Figure 4.11. Mean diurnal distribution plots apportioned by PMF generated source factors for the late winter / early 
spring season (Feb 16 – Apr 4). The plots include mass distribution of (a) scaled ‘dairy and livestock’ factor 
concentrations, (b) scaled ‘urban + oil / gas’ factor concentrations, (c) scaled ‘primary biogenics and secondary 
organics’ factor concentrations, and (d) scaled ‘agriculture + soil management + delta’ factor concentrations. The 
solid colored line represents the average concentration for that hour of day while the semi-transparent shaded region 
represents the 1σ standard deviation. The remaining plots show source-wise distribution of methane enhancements 
(e) in ppb above seasonal minimum and (c) by percentage of enhancement. The legend represents the source 
categories of the 4-factor PMF solution. 
 

4.11 e-f. Higher daily temperatures during this period compared to the immediately preceding 

winter period (Table 3.1) results in an increase in anaerobic activity of microbes in the Delta 
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wetlands (Miller, 2011). It should be noted that the % contribution from the ‘ag + delta’ source 

to the CH4 apportionment (Figure 4.11 e) is somewhat larger than that observed from the same 

source in early fall 2012 (4.5 c). This cannot be reasonably explained on the basis of average 

ambient temperatures as temperatures in this period are cooler than that observed in early fall 

2012 (Table 3.1). Drainage of agricultural fields (including rice paddy) in preparation for new 

plantings has been reported to be responsible for large releases of CH4 (Hatala et al., 2012; Knox 

et al., 2014). In this season, the dominant day time wind direction is from the northwest (Figure 

3.2 e) where 90% of California’s rice crop is grown in the upwind Sacramento Valley This is the 

season when large amounts of flooded rice paddy fields with huge amounts of plant residue are 

drained before seeds of the new crop are sown, and this could be responsible for the CH4 seen in 

this ‘ag + delta’ source factor. Drainage of water-logged fields (from the rainy season) 

containing agricultural residues in the Delta, in preparation for the growing season can also lead 

to CH4 emissions that apportion to this source.  

Spring 2013 (Apr 6 – May 31) 

The PMF analysis during the spring season results in a 5-factor solution with an 

additional factor related to ‘isoprene and oxidation products’ being produced in this seasonal 

period (Figure 4.12) as compared to the winter / spring 2013 period (Figure 4.10). This is 

primarily due to significantly warmer temperatures in this period along with greater sunlight 

input which increases isoprene emissions from vegetation surrounding WGC. Isoprene and its 

oxidation products, apportion into their own factor owing to a sharp diurnal cycle resulting from 

their different source distribution as compared to other oxygenated VOCs.
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Figure 4.12. Factor profiles of resolved PMF source factors denoting major source categories influencing the chemical composition of each profile during spring 
of 2013 (Apr 6  –  May 31). The sum of the scaled mass fractions of all species adds up to unity for each profile. The VOCs with an asterisk sign may have minor 
contributions from other VOCs detected at the same m/z depending on the season (see text).
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Figure 4.13. Mean diurnal distribution plots apportioned by PMF generated source factors for spring 2013 period 
(Apr 6 - May 31). The plots include source-wise distribution of methane enhancements (a) in ppb above seasonal 
minimum and (c) by percentage; source-wise distribution of nitrous oxide enhancements (b) in ppb above seasonal 
minimum and (d) by percentage, and (e) source-wise distribution of methanol enhancements above seasonal 
minima. The legend represents the factor source categories of the 5-factor PMF solution for spring 2013 season. 
 

The majority of the CH4 signals, ~ 70 %, are apportioned to the ‘dairy and livestock’ 

factor (Figure 4.13 c) with an uncertainty of 14 % in estimating the CH4 mass fraction belonging 

to this source factor. About 10 to 15 % of the CH4 enhancements are apportioned to the ‘urban 

and oil / gas’ source factor with an uncertainty of 63 % in the factor CH4 mass fraction. 

Contributions from the ‘ag + soil management + delta’ source factor to the CH4 enhancements 

remain relatively high at 20 – 25 % (standard deviation of 36 % about the mean CH4 mass 

fraction) and this conforms with increasing CH4 emissions from wetland ecosystems in Delta 
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 (Figure 6; Knox et al., 2014). The CH4 fluxes observed from these wetland ecosystems during 

the spring and summer season (Knox et al., 2014) are on the same scale as that reported from the 

airborne flux measurements over the dairy intensive regions in the Central Valley in the 

CABERNET study (Table 3.2; Guha et al., 2014). This indicates there are significant natural and 

anthropogenic (managed lands) sources of CH4 in the Delta with predominantly microbially-

mediated emission pathways that are more active in warmer temperature regimes with saturated 

soil conditions. As also indicated by the wind rose plots (Figure 3.2 f and 3.3 f), there is a 

marked change in mesoscale meteorology in this season as the up and down valley flow pattern  

gives way to land-sea breezes and the prevailing wind direction is more westerly (Zhong et al., 

2004; Bao et al., 2007). This should increase the influence of the ‘urban and oil / gas’ factor on 

the CH4 signals given their upwind location. We do not, however, observe any increase in the 

CH4 apportionment to this factor, possibly due to simultaneous and larger input from CH4 

emissions occurring in the Delta ecosystem which masks the influence of the ‘urban + oil/gas’ 

source on CH4 apportionment.  

There is a significant difference in N2O source apportionment in the spring season 

(Figures. 4.13 b and d) as compared to the late fall (Figures. 4.7 b and d) and winter season 

(Figures 4.9 b and d). In this season, the ‘agriculture + soil management + Delta’ source factor is 

the overwhelming contributor to the N2O enhancements (~ 80 %) with only ±10 % uncertainty in 

estimating the mean N2O mass fraction (in Figure 4.12) using the bootstrapping method. The 

‘dairy and livestock’ sector accounts for the remaining 20 % emissions. This is in sharp contrast 

with the apportionment in the above-mentioned seasons when the ‘dairy and livestock’ sector 

was the dominant source of N2O emissions. Manure management practices that are the principal 

source of N2O from dairies are not expected to widely vary over the annual cycle. Additionally, 
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CH4 emissions from dairies are relatively unchanged over the course of the year and this 

indicates that dairies and feedlots generally operate in the same manner through the annual cycle. 

Hence, the higher proportion of N2O enhancements from the ‘ag + soil management’ factor can 

be attributed to a tremendous increase in emissions from this sector. Most of the inorganic / 

organic fertilizer and animal manure application to the farms take place early in the growing 

season that can range from Mar -Apr (for rice) to May-Jun (for corn and other crops). Hence 

major N2O emissions can be expected in these months as the fields are flooded and irrigated 

which acts as a trigger for subsequent denitrification and N2O emissions (Rosenstock et al., 

2013). Thus, we note that N2O emissions from the ‘ag + soil management’ sector show a strong 

pattern of seasonality with much higher contribution to the apportionment of the measured 

signals during the spring (and as we see later, in the summer season) as opposed to the end of the 

growing season (in late fall) or winter when application of N fertilizer for agriculture is at its 

minimum in California.  

Figure 4.13 e indicates that most of the methanol emissions in the spring season arise 

from ‘biogenic and secondary’ sources far outweighing the contribution from the ‘dairy and 

livestock’ sector. This is consistent with literature on biogenic methanol emissions which point 

to springtime pectin biosynthesis during plant and leaf growth as a principal methanol source 

(Galbally and Kirstine, 2002; Karl, 2003; Schade and Goldstein, 2006). The exponential variance 

of methanol emissions with temperature (Harley et al., 2007) during the spring and summer 

months seen in this work agree well with the trends observed in a similar year-round tall-tower 

measurement at a semi-rural site (Hu et al., 2011) and previous studies in California (Schade and 

Goldstein, 2006). The lack of CH4, in this source factor, though not surprising, is a confirmation 

that there are major plant biogenic sources of methanol that do not contribute any methane.
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Figure 4.14. Factor profiles of resolved PMF source factors denoting major source categories influencing the chemical composition of each profile during 
summer of 2013 (Jun 1  –  Aug 4). The sum of the scaled mass fractions of all species adds up to unity for each profile. The VOCs with an asterisk sign may have 
minor contributions from other VOCs detected at the same m/z depending on the season (see text). 



 

105 
 

 

Figure 4. 15. Mean diurnal distribution plots apportioned by PMF generated source factors for summer 2013 period 
(Jun 1 – Aug 4). The plots include source-wise distribution of methane enhancements (a) in ppb above seasonal 
minimum and (c) by percentage; source-wise distribution of nitrous oxide enhancements (b) in ppb above seasonal 
minimum and (d) by percentage, and (e) source-wise distribution of methanol enhancements above seasonal 
minima. The legend represents the factor source categories of the 6-factor PMF solution for summer 2013. 
 

Summer 2013 (Jun 1 – Aug 4) 

The factor profiles in the 6-factor PMF solution for the summer 2013 season are 

represented in Figure 4.14. The ‘dairy and livestock’, ‘urban and oil / gas’, and ‘agriculture + soil 

management + delta’ source factors look similar in composition to the same factors from the 

preceding spring analysis (Figure 4.12). In terms of source apportionment, a majority of CH4 

emissions are still apportioned to the ‘dairy’ factor (~ 55 – 70 %; 10% uncertainty in 
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the averaged CH4 mas fraction ) even though its relative share is reduced. The delta-related CH4 

emissions are responsible for about 20 - 40 % of the observed enhancements (Figure 4.15 c) 

which is the maximum amongst all the PMF sampling periods for this source. The uncertainty in 

the mean CH4 mass fraction for the delta source is +/- 11 %. The relatively high contribution of 

this source to the PMF apportionment can be partly due to wind directions as winds are primarily 

westerly and south-westerly during the summer season (Figures 3.2 g and 3.3 g) and this makes 

WGC directly downwind of the Delta region. The core reason is most probably increased CH4 

emissions from wetlands, peatlands and rice cultivation in the upwind Delta. The contributions 

from wetland and flooded agricultural systems scale with temperature and hence peak during the 

summers (Hatala et al., 2012; Knox et al., 2014). We observe that the source contribution of the 

‘ag + soil + delta’ factor to the apportionment of CH4 signals peaks during this season and then 

decreases in the early fall season as ambient temperatures drop (Figure 4.5 c) before reducing to 

undetectable proportions in the late fall (Figure 4.7 c) and winter season (Figure 4.9 c). 

Contributions from urban and oil / gas sources remain about 10 %. 

The bulk of the N2O signal is apportioned to the ‘agriculture-related’ source factor 

(Figures 4.15 b and d). In this analysis, we observe the ‘splitting of factors’ phenomena 

explained in Section 2.2.6 in Guha et al. (2014). A portion of the N2O enhancements gets 

apportioned to the ‘biogenics’ and the ‘isoprene’ factors. A ‘splitting’ phenomena is likely to be 

observed in high-factor solutions with fewer degrees of freedom (total included species in the 

data set) when contributions from collocated sources may get apportioned between them. It 

should be noted that both the ‘biogenics’ and the ‘isoprene’ factor are originating from natural 

plants and non-woody and woody crops being grown on agricultural farmlands in the Delta in 

the vicinity of WGC. These farm lands are the major source of soil emissions of N2O being 
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apportioned to the ‘ag soil management + delta’ factor. Hence the total contribution of the 

agriculture-related N2O emissions to the observed enhancements should be looked upon as the 

sum of the contributions of the three above-mentioned factors which amounts to 80 - 90% ( < 6% 

uncertainty in the ‘ag + soil’ mean N2O mass fraction from bootstrapping analysis) with the rest 

being attributed to the ‘dairy and livestock’ factor. The current N2O source apportionment, along 

with a similar apportionment in the spring season, underlines the importance of fertilizer-related 

emissions of N2O from the agricultural sector during the growing season (Apr – Oct). We do not 

have N2O measurements during early Fall but in late fall of 2012, we observe that the proportion 

of agriculture-related N2O in the total enhancements reduces to 20 % coinciding with decreasing 

inputs of fertilizers to farm lands as the growing season draws to a close and crops are harvested. 

As is observed during spring, methanol emissions are dominated by the ‘biogenic’ factors with a 

minor contribution from the ‘dairy’ source (Figure 4.15 e). 

Summer 2012 (Jun 15 – Aug 31) 

The profiles in the 6-factor PMF solution in summer 2012 (Figure 4.16) are similar to 

those from summer 2013 (Figure 4.14), with the exception that N2O measurements were not 

present in the 2012 analysis. N2O is the dominant constituent of the ‘ag + soil + delta’ profile, 

and in its absence, the mass fractions of other tracers in this factor are reasonably larger. The 

CH4 source apportionment result (Figures 4.17 a and c) from summer 2012 has three 

contributing sources: the ‘dairy and livestock’ source, ‘ag + soil + delta’ source, and the ‘urban 

and oil / gas source’ in nearly the same proportions as seen in the summer 2013 analysis.  

The chemical composition of the ‘urban and oil /gas’ source factor, at first glance, does 

not look similar for the two summer periods as acetonitrile and acetone + propanal fractions in 

the summer 2012 solution look significantly larger. A deeper investigation leads to an interesting 
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Figure 4.16. Factor profiles of resolved PMF source factors denoting major source categories influencing the chemical composition of each profile during 
summer of 2012 (Jun 16  –  Aug 31). The sum of the scaled mass fractions of all species adds up to unity for each profile. The VOCs with an asterisk sign may 
have minor contributions from other VOCs detected at the same m/z depending on the season (see text).  
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Figure 4.17. Mean diurnal distribution plots apportioned by PMF generated source factors for summer 2012 period 
(Jun 16 – Aug 31). The plots include source-wise distribution of methane enhancements (a) in ppb above seasonal 
minimum and (c) by percentage and (c) source-wise distribution of methanol enhancements above seasonal minima. 
The legend represents the factor source categories of the 6-factor PMF solution for summer 2012. 
 
finding. A 7-factor solution (not shown here explicitly) produces an additional factor which is 

mostly dominated by acetonitrile and acetone (Figure 4.18 a) that was formerly present in the 

‘urban and oil / gas’ factor in the 6-factor solution. This new factor also has minor mass fractions 

attributed to combustion tracers CO, benzene and a minor amount of CH4. Acetonitrile is a well-

known biomass burning tracer (Bange and Williams, 2000; de Gouw, 2003). On analyzing the 

average vertical diurnal profile of measured acetonitrile in summer 2012, we find that huge 

concentrations of acetonitrile were present in the upper levels of WGC at all times of the day 

(Figure 4.18 b), and they were transported down during the day time when vertical mixing is 

rapid. Significant amounts of acetone were also present in the upper parts of the mixed layer 

(Figure 4.2 i) and vertical mixing during the day caused this signal to be detected at the 131 m 

a.g.l level. The source of this acetonitrile and acetone was the large forest fire in northeastern 

California that occurred in August 2012 known as the Rush Fire. This wildfire at the time was 
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Figure 4.18. (a) An additional source factor attributed to forest fires results from splitting of the urban + oil / gas factor in a 7-factor PMF solution during 
summer of 2012; vertical mean diurnal profile of biomass burning tracer acetonitrile during (b) summer of 2012 and (c) summer of 2013 showing accumulation 
of large emissions in the upper part of the mixed layer from significantly higher forest fire activity in the Sierra Nevada mountains during this period (Jun – Aug) 
in 2012 versus 2013. The Rush Fire in northeastern California (second largest wildfire in California recorded history) took place in August 2012.
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the second largest in the state’s recorded history (since 1932). Since forest fires are associated 

with intensely hot plumes, the VOCs in the fire emissions plumes are carried aloft above the 

boundary layer quickly by the rising hot air. These emissions arrive at the 131 m a.g.l 

measurement level on WGC during the middle of the day when peak vertical mixing occurs. This 

is also the time of day when emissions contained in ‘urban and oil /gas plumes’ arrive at the site 

with the day time westerly sea breeze. This is the reason that the 6-factor solution ‘mixes’ both 

these unique source contributions (from two vertically divergent directions) into a single factor. 

With a total of only 12 apportioned tracers in the whole time series, we observe ‘splitting’ of 

other source factors (not shown and as described above and in Chapter 2 of Guha et al., 2014), if 

we try to use the 7-factor solution as the ‘best case’ solution.  Hence we do not choose the 7-

factor solution as our final solution but instead present the ‘urban and oil/gas’ factor profile and 

the ‘forest fires’ factor profile from the 7-factor solution separately (in Figure 4.18 a) to explain 

the observed chemical profile of the ‘urban and oil / gas factor’ in the 6-factor solution (Figure 

4.16). It should be noted that in summer 2013, acetonitrile concentrations in the upper elevations 

of the mixed layer were significantly lower in the absence of a large fire like the one in August 

2012. The ‘infamous’ Rim Fire in Yosemite National Park occurred in August 2013 following 

the conclusion of our summer 2013 PMF analysis and is hence not captured in our analysis. 

Detection of an acetonitrile-containing ‘biomass burning’ factor associated with large wildfires is 

an important finding that confirms the applicability and effectiveness of the PMF method to 

apportion GHG sources containing unique source tracers. The contribution of CH4 from the 

forest fires source factor was found to be insignificant compared to other regional sources and 

well-within the range of ascribed uncertainties. 
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Tables 1.1 and 1.2 included in Chapter 1 (Executive Summary) summarize the mean 

percentage source-specific distribution of CH4 and N2O enhancements over different seasons. 

The contrast in the PMF apportionment between different seasons and with the inverse modeling 

approach is discussed in more detail in Chapter 6. 
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5. Seasonally varying methane and nitrous oxide emissions using 

inverse modeling of atmospheric back trajectories 

5.1. Introduction 

At present, CH4 and N2O are estimated to contribute ~ 9% and 3% of total California 

GHG emissions, respectively (CARB, 2015). However, the lack of accurate activity data and an 

incomplete understanding of emission processes result in uncertainty in the bottom-up emissions. 

This suggests that atmospheric measurements and inverse modeling may provide an independent 

method to qualify local to regional CH4 and N2O emissions from California. It should be noted 

that the inverse modeling work performed in this project (ARB contract # 11-315) is unique and 

different from the LBNL inverse modeling project (ARB contract # 11-306), which analyzed a 

data across the state from a later time period ( fall 2013 - spring 2014).  This work utilizes data 

from WGC alone for a different time period (fall 2012-2013), primarily for the purpose of 

comparing with the coincident VOC-based PMF analysis.   

Atmospheric inverse modeling using observed and predicted mixing ratios to estimate the 

surface flux has become an effective tool to understand GHGs emissions (Houweling et al., 

1999; Gimson and Uliasz, 2003; Kort et al., 2008; Zhao et al., 2009; Jeong et al., 2012a). Using 

this method, Zhao et al. (2009) have estimated CH4 emissions from the central California; Jeong 

et al. (2012a) have analyzed the seasonal variations of CH4 and Jeong et al. (2012b) estimated 

N2O emissions in central California. Also, Jeong et al. (2013) investigated CH4 emissions across 

California using multiple towers. Applying a similar inverse modeling approach to this study, the 

multi-tower inverse analysis used atmospheric observations from five sites in California’s 

Central Valley across different seasons (September 2010 to June 2011). Combining the result 
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from a study of the South Coast Air Basin (Wennberg et al., 2012), Jeong et al. (2013) estimated 

a state total of 2.0 – 2.7 Tg CH4/yr (at 68% confidence), which is higher than the current state 

inventory (~1.6 Tg CH4/yr, CARB (2015)).   

Following those efforts, we quantify CH4 and N2O emissions from central California in 

the June 2012 to August 2013 period using a Bayesian inverse modeling approach driven by 

measurements from a tall tower near Walnut Grove (WGC, hereafter). We also update the N2O 

emission at December 2007 – November 2009 (2008-2009, hereafter) by using the same (used in 

this study) a priori emission maps, NOAA boundary condition and methods to gain surface 

footprints in springs and summers as the period of 2012 - 2013. In Section 5.2, we describe the 

measurements and modeling approach including a priori CH4 and N2O emission maps, 

atmospheric transport modeling, and the Bayesian inverse method and uncertainty analysis. 

Section 5.3 reports results, including averaged footprints in different seasons, seasonally varying 

measured CH4 and N2O mixing ratios and the inferred CH4 and N2O surface emissions from 

central California around WGC by source and region. Section 5.4 discusses the results and offers 

conclusions on CH4 and N2O emissions in central California for the measurement period. 

5.2. Data and Models 

The Bayesian inversion analysis employed here obtains posterior CH4 and N2O 

emissions by multiplicatively scaling the a priori emission maps to minimize the weighted 

difference between the measured and predicted GHG signals as described below.  

5.2.1. Measurements  

CH4 and N2O mixing ratios were measured every 15 minutes at 91 and 483 m on a tall-

tower near Walnut Grove, California (WGC, 121.49°W, 38.27°N, 0 m above sea level). As in 
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previous work from this site (Zhao et al., 2009; Jeong et al., 2012a), dry-molar CH4 mixing ratios 

are measured with a cavity ring-down (Picarro, G2301) spectrometer. Air was dried to between -

25 to -30°C dew point using condensers and Nafion drier, and 4 NOAA primary gas standards 

were used to calibrate and check the instrument gain and offset every 4 hours (Andrews et al., 

2014).  

Similarly, dry molar N2O was measured with an off-axis laser spectrometer (Los Gatos 

N2O/CO-EP). In this case, calibrations with two secondary standards were performed every 2 hr 

to maintain ~ 0.05 ppb precision and stability, as judged by stability of interleaved “target” gas 

measurements. To evaluate and control offsets of measured CH4 and N2O mixing ratios relative 

to NOAA calibration scales used to define the mixing ratio of background air inflow to 

California, the measured in-situ mixing ratios were compared with time synchronized flask 

sampling and analysis by NOAA. Using the in-situ to flask comparisons, the measurement 

accuracy was better than ~ 1 ppbv for CH4, and 0.1-0.2 ppb for N2O, both sufficient to capture 

measured atmospheric variations. Calibrated mixing ratios were then averaged into 3 hr time bins 

for comparison with predicted signals. The in-situ CH4 and N2O measurements were compared 

with analysis of flask samples collected at this site and subsequently analyzed at the NOAA 

laboratory. A mean offset of 0.3 ± 0.05 ppb of N2O was subtracted from the in-situ data to match 

the mean of the flask data.  

Before use in the inversions, measured GHG signals were selected based upon a “well-

mixed” requirement that the vertical gradient in mixing ratio between 91 and 483 m fall within a 

range typically found for each month. For example, Figure 5.1 shows the difference of hourly 

mean methane mixing ratios at 91 and 483 m is smallest in spring and the largest in winter with 

the minimum values of 0 and 118.3 ppb respectively. Here, the seasons are defined as summer  
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2012 (June 16 – August 31, 2012), early fall (September 01 – October 17, 2012), late fall 

(October 17 – November 30, 2012), winter (December 14, 2012 – January 29, 2013), winter-

spring (February 14 – April 05, 2013), spring (April 07 – June 01, 2013) and summer 2013 (June 

01 – August 05, 2013) due to the availability of measured data. Based on this analysis we find 

the time of convergence near midday. Following previous work at this site, we select data points 

in time when the CH4 mixing ratio difference between 91 and 483 m is less than 3 standard 

deviations from the difference of the mean diurnal cycle difference for the 1200-1700 time 

window. 

 

Figure 5.1. Diurnal cycles of mean hourly (PST) measured CH4 mixing ratio obtained for 91 and 483 m sampling 
heights on the WGC tower for the period from June 2012 to August 2013 (7 different seasons). 

 

5.2.2. Prior CH4 Emission Map 

Following previous work, we apply an update to a 0.1° × 0.1° prior methane emission 

model shown in Figure 5.2 for California including wastewater (WW), landfills (LF), dairy 

livestock (DLS), non-dairy livestock (NDLS), the natural gas system (NG, including petroleum 
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production), petroleum refining and mobile (PL), natural wetlands (WL), and crop agriculture 

(CP) (see Table 5.1). This work used the California Greenhouse Gas Emission Measurements 

(CALGEM) project a priori CH4 emission model (henceforth CALGEM model, available at 

calgem.lbl.gov) described by Jeong et al. (2012a, 2013, 2014) with some modifications. The 

CALGEM emission model provides emissions by sector at a high spatial resolution (0.1º × 0.1º) 

for California. The CALGEM model has seasonal components for wetlands and crop agriculture 

only, and these seasonal emissions are combined with non-seasonal emissions to construct 

monthly emission maps for inversions (Table 5.1). The inversion approach using non-seasonal 

prior emissions is widely used (e.g., Zhao et al., 2009; Jeong et al., 2012a; 2012b; 2013; Wecht 

et al., 2014; Cui et al., 2015). In particular, Jeong et al. [2012a; 2012b; 2013] showed non-

seasonal priors can provide information on seasonality in the posterior emission.  

In this study, the CALGEM prior emissions distributions are scaled to match 2012 ARB 

state totals for anthropogenic emission sectors (CARB, 2014; March 2014 version), with small 

(< 50 Gg CH4/yr) adjustments for some regions and sectors (per ARB staff private 

communication). The spatial distribution of the dairy livestock emissions was revised by 

incorporating the 2012 county-level dairy statistics from USDA 

Table 5.1. A Priori methane emissions (Tg CH4 yr-1)* for eight source sectors for 7 seasons and annual mean. 
 

 
Summer 
2012 

Early fall Late fall Winter 
Winter-
spring 

Spring 
Summer 
2013 

Annual 

WW 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
LF 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 
DLS 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 
NDLS 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
NG 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 
PL 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
WL 0.03 0.04 0.03 0.02 0.01 0.02 0.03 0.02 
CP 0.14 0.07 0.00 0.00 0.00 0.02 0.14 0.05 

Total 0.69 0.62 0.55 0.53 0.53 0.55 0.69 0.59 

*The emission represents the total for Regions 3, 7 and 8 near the WGC tower by season. 
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(http://www.nass.usda.gov/Statistics_by_State/California/Publications/County_Estimates/2013lv

sceF.pdf) using the spatial distribution from Jeong et al. (2013). The spatial distribution of 

petroleum production and the natural gas system was revised based on Jeong et al. (2014).   

 

   
     
    
  
  
  
  
  
  
  
  
  
  
  
  
  Figure 5.2. A priori scaled CH4 emission map (nmol/m2/s) based on CALGEM emission map (top left), a prior 
scaled N2O emission map (nmol/m2/s) based on EDGAR 4.2 emission map (top right) and region classification map 
(bottom). The location of the WGC tower is marked with an “x” near longitude = 121ºW, latitude = 38ºN.  
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Lacking a California specific map for a priori N2O emissions, we apply the 0.1° × 0.1° 

EDGAR 4.2 N2O emission (European Commission Joint Research Centre and Netherlands 

Environmental Assessment Agency, Emission Database for Global Atmospheric Research 

(EDGAR), release version 4.2, 2011, http://edgar.jrc.ec.europa.eu), after scaling each source 

sector to match the CARB inventory for 2012 by sector (see Figure 5.2, center). Outside 

California, the EDGAR 4.2 emission maps are used for both CH4 and N2O emissions in the 

remainder of the modeling domain described below.  

Kort et al. (2008) and Jeong et al. (2012b) assumed that N2O emissions from unfertilized 

natural soils are small compared to emissions from agricultural soils and other anthropogenic 

sources in California. In this study, we derived the emission map for natural forest based on the 

Global Emissions InitiAtive (GEIA) emission model (Bouwman et al., 1995) and included it in 

the inversion. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) land 

cover type data product (http://e4ftl01.cr.usgs.gov/MOTA/MCD12Q1.051/2012.01.01/, accessed 

February 2015) to identify natural forest pixels at 0.1° (~ 10 km) resolution. Based on the 

MODIS-derived natural forest map, we regridded the 1°x1° GEIA emissions from soils under 

natural vegetation and fertilized agricultural fields to represent 0.1° natural forest emissions. The 

prior N2O emission from natural forest is 2.2 Gg N2O/yr, which is 4.5% of the state total N2O 

emissions. Similarly, US EPA estimates forest soil emissions are less than 1%. Also, we used 

ocean N2O emissions from the GEIA model (Bouwman et al., 1995) to incorporate emissions 

from ocean along the California coast to the inversion system. While the total N2O emission 

from ocean within the entire modeling domain (extending from ~150W - 90W) is ~1.4 times 

the current state total anthropogenic N2O emission (44 Gg N2O/yr, CARB, 2015), they are 

distributed over a large area where there is negligible footprint sensitivity, resulting in very small 



 

131 
 

predicted signal at the WGC tower. The scaled N2O prior emission map from the EDGAR 4.2 

model as well as forest and ocean prior emission maps from GEIA model are applied to update 

regional inversion during the period of 2008-2009. 

5.2.3. Atmospheric Transport Modeling 

Predicted GHG mixing ratios within the modeling domains are computed as FE, where F 

is the footprint and E is the prior emission. The footprint F is calculated by tracking the parcel 

dwelling time in each pixel. The parcel transport was simulated by the coupled WRF-STILT 

(Weather Research and Forecasting and Stochastic Time-Inverted Lagrangian Transport) model 

(Lin et al., 2003; Skamarock et al., 2008; Nehrkorn et al., 2010). This transport model has been 

widely implemented in many studies including airborne (Gerbig et al., 2003; Kort et al., 2008) 

and tower measurement-based (Zhao et al., 2009; Jeong et al., 2012a, 2012b and 2013) 

inversions. 

 
Figure 5.3. WRF initial boundary set up with three-level nested domains. The ratio of spatial resolution between the 
three levels is 3. The resolutions for d01, d02, d03 and d04/d05 are 36, 12, 4 and 1.3 km, respectively. 
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The WRF model (version 3.5.1) was used for modeling meteorology with 5 

computational domains with the resolution of 36, 12, 4 (d01, d02 and d03) and two 1.3 (d04 and 

d05) km resolutions as shown in Figure 5.3. The d03 domain of 4 km resolution represents most 

of California; the d04 and d05 domains of 1.3 km are used to cover the metropolitan area of Los 

Angeles and the San Francisco Bay Area, respectively. As in Jeong et al. (2013), the WRF model 

was run with two-way nesting and planetary boundary layer (PBL) heights were resolved with 50 

levels over complex terrain features of California. Initial and boundary meteorological conditions 

are given according to the North American Regional Reanalysis data set (Mesinger et al., 2006). 

Based on the findings in Jeong et al. (2013), we adopt the Mellor-Yamada-Janjic (MYJ) scheme 

to model PBL and the NOAA-Noah land surface model (LSM) to model the land surface effects 

for the late fall to the early spring period (from October to March) and five-layer thermal 

diffusion LSM scheme to model the land surface for other months. More details on choosing 

PBL and LSM schemes can be found in Jeong et al. (2013) and not introduced in details here. 

The WRF run was conducted each day separately for 30 hours including the 6-hour spin-up from 

the previous day and the output data are saved hourly. 

The hourly WRF outputs are used to run the STILT model for particle trajectory 

simulations. An ensemble of 500 STILT particles are released at the WGC tower located in 

central California at the height of 91 m above ground every hour from 12 - 17 PST. These 

particles are run backward for 7 days driven with meteorology from WRF output within the d01, 

d02, and d03 domains to make sure that most of the particles reach the domain boundary. Model 

outputs are screened to remove instances when a majority (less than 80%) fails to reach the 

western edge of the domain at 130ºW longitude. CH4 background signals are computed using 
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both the NOAA-derived Pacific background (see Jeong et al., 2013 for details) and 

measurements from the Trinidad Head (THD) station. Measurements at THD were made by 

flame ionization gas chromatography as part of the Advanced Global Atmospheric Gases 

Experiment (AGAGE) network (Prinn et al., 2000). AGAGE uses the Tohoku University 

calibration scale, which is indistinguishable from the NOAA calibration scale used for the 

Picarro measurements at WGC with a relative scale factor of 1.0003 (Hall et al., 2014). N2O 

background is estimated using the NOAA boundary condition. 

5.2.4. Bayesian Inverse Model 

Inversion Approach 
 

The scaling factor Bayesian inversion (SFBI) method is used to estimate CH4 and N2O 

emissions from central California using measured CH4 and N2O mixing ratios at the tall tower 

WGC. As in Gerbig et al. (2003) and Jeong et al. (2013), model measurement relations can be 

expressed as,  

c = K + v                                                                                                   (5.1) 

where c is background-subtracted 3 hour mean measured mixing ratios at the receptor; K = FE is 

the predicted mixing ratio calculated by footprint F and prior emission E, which was introduced 

in Section 5.2.3 and Section 5.2.2 respectively;  presents scaling factors used to scale a priori 

emissions according to source sectors or region sectors depending on source or region analysis; 

and v is a model-data mismatch vector represented with a covariance matrix R. R is a diagonal 

matrix which represents the total uncertainty contributed by all error sources such as the 

measurement error and the transport error. Based on the Gaussian assumptions, the posterior 

estimate for  is solved as 
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                                       (5.2) 

where prior is the a priori estimate for , and Q is the error covariance associated with prior. 

50% uncertainty is employed for prior in the present a prior emission for the inversion analysis of 

CH4 (Pacala et al., 2010) and 100% for N2O (Jeong et al., 2012b). The posterior error covariance 

for  can be expressed as  

                                                              (5.3) 

The SFBI method is used to estimate optimal CH4 emissions for 7 seasons and N2O 

emissions for 4 seasons based on the a priori emission map described in Section 5.2.2. The 

inverse modeling approach are implemented for two phases as in Bergamaschi et al. [2005] and 

Jeong et al. [2012a, 2012b] for both CH4 and N2O inversions. At first, the inversion is carried out 

using signals of well-mixed measured signal depicted in Section 5.2.1. The second/final 

inversion are conducted again using data selected by another criteria |ci – (K)i|
2 < Ri, where  

is a fixed value for each month depending on the chi-square statistics. Both of the first and 

second inversions use the original a priori emission maps, which means that the first inversion 

can be recognized as a data selection tool for the atmospheric observations. In the final inversion, 

the outliers which might otherwise produce biases in the inversion will be removed. Here, we 

adopt the same method as Jeong et al. (2013) to decide  instead of using  = 2 in Bergamaschi 

et al. (2005). The value of  for each month is decided via an iterative process until that the chi-

square values from the final inversion is very close to unity (Tarantola, 1987).  

To conduct the regional inversion for the period of 2008-2009, we re-calculated the 

predicted N2O mixing ratios using the updated footprints as well as the updated a priori N2O 

λ post= (KT R− 1 K+Q λ
− 1)− 1(K T R− 1c+Q λ

− 1 λ prior)

V post= (K T R− 1 K+Q λ
− 1)− 1
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emission maps mentioned above while the measured signal and other settings are same as Jeong 

et al. (2012b).  

Uncertainty Analysis 
 

Jeong et al. (2012a; 2012b; 2013) estimated the model-data mismatch matrix R for the 

WGC tower by summing the uncertainties from different sources such as the limited number 

(500 particles in this study) of particles released (Spart), flux aggregation at finite resolution 

(Saggr), errors in modeled transport winds (STransWIND) and PBL (STransPBL), and estimated 

background (Sbkgd), which can be expressed as  

Ri = Spart + Saggr + Sbkgd + STransPBL + STransWIND,                                       (5.4) 

In this paper, we adopt the uncertainty analysis result in Jeong et al. (2012a) for CH4 and 

Jeong et al. (2012b) for N2O. The model-data mismatch used in this study is listed in Table 5.2. 

The details on the uncertainty analysis are described in Jeong et al. (2012a; 2012b). We also 

evaluate the sensitivity of the inversion results to the R covariance matrix. 

Table 5.2. Estimated model-data mismatch errors by month for CH4 and N2O (Jeong et al., 2012a; 2012b). 
 

Month 1 2 3 4  5 6 7 8 9 10 11 12 

Model-data mismatch for CH4 (ppb) 42 42 22 22 22 22 16 16 22 22 22 42 

Model-data mismatch for N2O (ppb) 0.63 0.63 0.4 0.4 0.4 0.48 0.48 0.48 0.41 0.41 0.41 0.63

 

5.3. Results 

5.3.1. Meteorology and Footprints 

We compare the WRF predicted wind and the measured wind from the WGC tower to 

evaluate the wind speed and wind direction difference. The average root-mean-square error 
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(RMSerr) at four height levels of 122, 244, 366 and 488 m ranges from 2.32 to 4.21 ms-1. We 

found that the averaged RMSerr is much smaller in July and August than in winter. For instance, 

in the year 2012, the RMSerrs for July and August were 2.32 and 2.45 ms-1, respectively. For the 

same months in 2013, the RMSerrs were 2.70 and 2.47 ms-1, which are much smaller than that of 

December 2012 (4.21 ms-1). These results are consistent with the model-data mismatch errors in 

Jeong et al. (2012a). The predicted-measured wind angle difference is also an important factor 

influencing the comparison of predicted and measured GHG signals. The averaged values of the 

mean (standard deviation) of the angle difference at different vertical levels ranged from 18.91 

(21.95) to 43.57 (42.59) degrees. The angle differences are also smaller in summer than other 

seasons. For instance, the mean (standard deviation) angle differences are 52.91(43.52), 65.92 

(48.45), 54.65(46), 61.8 (49.74), 49.17 (44.56), 44.63 (37.92) and 52.55 (41.39) degree for 

seasons of summer in 2012, early fall, late fall, winter, winter-spring, spring and summer in 

2013, respectively. To reduce model-data-mismatch errors, data were excluded for time periods 

when the angle difference was greater than 2 standard deviations of the mean angle difference 

for each height and each month in the case of CH4 inversion analysis. This had the effect of 

removing between 3 and 9% of the 3 hourly predicted CH4 signals across the different seasons in 

this study. 

Resulting footprints are shown as midday averaged footprints for the different periods of 

study in Figure 5.4. The panels show that the footprints vary seasonally due to different wind 

directions in different seasons. For example, footprints over the San Francisco Bay are stronger 

than other regions in summer (both of 2012 and 2013) because of sea breeze winds from the 

Golden Gate into the Sacramento River Delta in summer. In contrast, Central Valley footprints 

are relatively strong in the late fall to early spring periods. For instance, the footprints are very  
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Figure 5.4. Seasonally averaged footprint maps over 11-19 (PST) for 7 different seasons of summer at 2012, early 
fall, late fall, winter, winter-spring, spring and summer at 2013. 
 

strong in the North Central Valley during late fall and winter when the wind blows along the 

valley.  

5.3.2. Estimating CH4 emission 

CH4 Mixing Ratios 

After screening data as described above, measured mixing ratios are averaged to 3-hour 

periods and compared with predictions for daytime periods (13-18 PST for summer and 12-17 

PST for other seasons).  

The mixing ratios are shown in Figure 5.5, which include measured CH4 mixing ratios for 

the first inversion, measured CH4 mixing ratios for the final version, the predicted signal + 

background signal for the final inversion and background. The typical amplitude of both of the 

predicted and observed signals varies with season. For instance, the largest mixing ratios appear 
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in winter, and mixing ratios increase in the late fall while decreasing in the early spring 

generally. This is consistent with the variation of the boundary layer depths in central California 

with the boundary layer highest in late-spring months and lowest in winter (Bianco et al., 2011). 

Here, the background-subtracted mean values used in the first inversions are 31.1, 57.7, 79.9, 

91.4, 61.9, 20.8 and 33.8 ppb in 2012 summer, 2013 early fall, late fall, winter, winter-spring, 

spring and summer. Additionally, the minimum values of the measured CH4 mixing ratios are 

close to the NOAA CH4 background with the minimum values in the summer and the maximum 

in the winter. The approximation of the minimum measured mixing ratios to the background also 

indicates that the estimated background adopted in this study is reasonable and there is no 

significant bias in the measured mixing ratios.  

 

 

 

 

 

 

 

 

Figure 5.5.  3-hour mean CH4 mixing ratio comparison: measured CH4 mixing ratio during noon - afternoon hours 
used in the first inversion (gray open circle), measured CH4 mixing ratio used in the final inversion (black filled 
circle), WRF-STILT predicted (used in final inversion) CH4 mixing ratio + WRF-STILT predicted CH4 background 
(NOAA background) mixing ratio during noon – afternoon hours used for the final inversion (blue open circle), and 
WRF-STILT predicted CH4 background mixing ratio using the 3-D NOAA curtain (red dots). 
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Bayesian Analysis of CH4 

Following prior work, we conduct the Bayesian inverse analysis using scaled CALGEM 

emission map introduced in Section 5.2 for the 8 source sectors, i.e. waste water (WW), landfill 

(LF), diary livestock (DLS), non-dairy livestock (NDLS), natural gas (NG), petroleum (PL), 

wetland (WL), crop agriculture (CP) and emissions from outside CA. Hence, a total of 9 scaling 

factors λ (i.e., 8 sectors and outside California) are solved for each source inversion analysis. For 

region analysis 17 scaling factors for each region inversion analysis (i.e., 16 regions in CA and 

region outside CA) are solved. Here, we focus on the source inversion and the total emissions 

from regions 3, region 7 and region 8 (Fig. 5.2 bottom) because these are the regions with 

sensitivity in the WGC tower footprints. 

After the first inversion, an orthogonal weighted chi-squared linear regression analysis 

[Press et al., 1992] is conducted. Outlier data are then identified and removed when difference 

between measured and predicted mixing ratios are larger than a certain value which is a factor  

(e.g.,  = 2) of the estimated error (Bergamaschi et al., 2005). In this study,  is set to 2 - 3 by 

considering the chi-square statistics close to 1. Depending on the season, the outlier removals 

vary with season excluding 2.2, 12.9, 29.5, 10.0, 7.7, 0 and 2.3% (mean removal rate = 10.8%). 

Here, the removal rate is somewhat smaller than our previous studies of 5 - 25% (removal rate = 

13.4%) in Jeong et al. (2012a) and 12 - 14% removal rate reported by Bergamaschi et al. (2005). 

After outliers are removed, the SFBI is implemented for the second inversion. The slope 

and RMS error for different seasons after the final inversion are 0.82±0.08 (RMS error = 16.39 

ppb), 0.86±0.09 (22.24 ppb), 0.87±0.06 (21.96 ppb), 1.03±0.08 (44.11 ppb), 0.99±0.03 

(23.41 ppb), 0.78±0.12 (14.9 ppb) and 0.76±0.25 (20.27 ppb) for summer of 2012, early fall, 
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late fall, winter, winter-spring, spring and summer of 2013, respectively (Figure 5.6). Before the 

inversion, the best-fit slopes of predicted vs. measured (RMS error) for individual seasons were 

0.65±0.06 (19.15 ppb), 0.56±0.09 (44.3 ppb), 0.28±0.05 (84.89 ppb), 0.49±0.07 (86.33 ppb), 

0.64±0.04 (53.08 ppb), 0.72±0.11 (15.18 ppb) and 0.76±0.32 (24.02 ppb). As shown in 

Figure 5.6, after the inversion, the results for all seasons have improved yielding the best-fit 

slopes near unity and reducing the RMS errors, in particular in winter and winter-spring. The 

final posterior scaling factors for each season in Table 5.3 show that the posterior emissions 

from all source sectors are slightly smaller or higher than the prior emission, in particular the 

source sectors of DLS, LF, NDLS and NG. Only the emissions from DLS and CP are smaller 

than the prior emission in summer 2013. Also, the uncertainties for LF, DLS, NG and CP were 

significantly reduced depending on the season, suggesting that emissions from these sources are 

distributed near WGC tower. For instance, the uncertainty of LF is reduced to 38% in late fall, 

DLS reduced to 10% in winter-spring, NG reduced to 34% in summer 2012, and CP reduced to 

25% in summer 2012. However, the posterior uncertainties for other sectors are only slightly 

decreased since most of the emission sources from these sectors are far from the WGC tower and 

are not constrained by the inversion. 

Table 5.3. Final posterior scaling factors for source inversions for each season obtained using the NOAA 
background. 

 *Source sectors include wastewater (WW), landfill (LF), dairy livestock (DLS), non-dairy livestock (NDLS), natural gas including petroleum 
production and local processing (NG), petroleum refining and mobile sources (PL), wetland (WL) and crop (CP, largely rice). 

Source* Summer 2012 Early Fall Late Fall Winter 
Winter-
spring Spring 

Summer 
2013 

WW 0.92±0.49 1.05±0.5 1.13±0.5 1.06±0.5 1.18±0.5 0.98±0.5 1.08±0.49 

LF 1.12±0.45 1.37±0.46 1.88±0.38 1.23±0.5 1.78±0.44 1.02±0.46 1.24±0.44 

DLS 0.94±0.42 1.17±0.46 1.73±0.37 1.81±0.22 1.21±0.1 1.19±0.43 0.6±0.45 

NDLS 1.12±0.48 1.16±0.49 1.45±0.49 1.21±0.49 1.66±0.48 1.17±0.48 1.03±0.49 

NG 1.14±0.34 1.33±0.4 2.14±0.42 1.35±0.49 2.47±0.37 1.06±0.42 1.27±0.37 

PL 0.93±0.49 1.07±0.5 1.17±0.5 1.04±0.5 1.26±0.5 0.99±0.5 1.03±0.5 

WL 1.13±0.48 1.2±0.49 1.34±0.49 1.08±0.5 1.25±0.5 1.05±0.5 1.03±0.49 

CP 1.21±0.25 0.86±0.3 0.98±0.5 0.99±0.5 0.96±0.5 0.99±0.45 0.53±0.34 
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Figure 5.6. Comparison of CH4 mixing ratios between measurements and predictions based on the final source 
inverse optimization using NOAA background for summer in 2012, early fall, late fall, winter (from left to right at 
top) and winter-spring, spring and summer in 2013  (from left to right at bottom).  

We then examine the seasonal variations in posterior emissions from the inversion by 

source sector in each season in Figure 5.7 (left), and from the inversion by region for regions 3, 7 

and 8 in Figure 5.7 (right). In general seasonal variations from specific sources are small 

compared to the posterior uncertainties.  One exception is agriculture (CP), which is driven by 

seasonality of rice agriculture in region 3, where higher emissions are expected in summer due to 

flooding and agricultural production. Summing across source sectors for regions 3, 7, and 8 

(regions sensitive to WGC), seasonal variations in total CH4 emissions from these regions are 

also generally small compared to the posterior uncertainties. Using a t-test, we find that total 

emissions in late fall and winter of 2012 are higher (at 95% confidence) than summer, 2013, but 

not summer, 2012. Given potential for uncertainties in atmospheric transport and other factors, 

we recommend further studies to improve understanding of seasonal variations in CH4 emissions 

from California. 
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Figure 5.7. Posterior CH4 emissions in region 3, region 7 and region 8 by different sources from source inversion 
analysis (left) and region inversion analysis (right) based on NOAA background. 

 

To evaluate the annual total emissions from different source sectors, the annual prior and 

posterior emissions are compared in Table 5.4. For the three regions (3, 7, and 8) in central 

California, the inverse analysis suggests that actual total CH4 emissions for the three regions are 

marginally higher (1.1 – 1.5, at 68% confidence) than the prior although most of the individual 

emission sectors are consistent with those of the prior within error. The main contribution to the 

posterior emission is dairy and non-dairy livestock accounting for about 51% of the total 

followed by landfills with ~17%, natural gas with ~16% and rice with ~7%. Wetland, petroleum, 

and wastewater each contributes 3 - 4% of the total. As in Jeong et al. (2012a), we find that there 

are anti-correlations (i.e., negative correlation coefficients; Tarantola, 1987) between the 

emissions from different source sectors. For instance, the correlation coefficient between DLS 

and LF is -0.34 in late fall while it is -0.39 between DLS and NG in summer 2013. This result 

suggests that the data used to drive these inversions does not allow us to uniquely resolve 

independent scaling factors such that only a linear combination of those scaling factors can be  
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 Table 5.4. A priori and posterior annual CH4 emissions (Tg CH4 yr-1) by source sector. 

 

Source* Prior Posterior 
CP 0.05 0.05±0.02 

DLS 0.26 0.32±0.09 
LF 0.10 0.13±0.04 

NDLS 0.05 0.07±0.03 
NG 0.08 0.12±0.03 
PL 0.01 0.02±0.01 
WL 0.02 0.03±0.01 
WW 0.02 0.02±0.01 
Total 0.59 0.76±0.11

 

*Source sectors include crop (CP, largely rice), dairy livestock (DLS), landfill (LF), non-dairy livestock (NDLS), natural gas including petroleum 
production and local processing (NG), petroleum refining and mobile sources (PL), wetland (WL) and wastewater (WW). 

resolved. This highlights the importance of the VOC measurements and analysis in elucidating 

the relative contributions from different source sectors. 

Sensitivity analysis 

In this study, we also considered the uncertainty from using different CH4 background 

inflow data and the varied model-data-mismatch error. For background, in addition to the NOAA 

curtain product we used measurements from the THD site to represent clean air from the Pacific 

Ocean. We found that annual total emissions for the combined regions of 3, 7 and 8 are only 

slightly higher (0.75 +/- 0.12 vs. 0.68 +/- 0.12 Tg CH4/yr) for the NOAA background than for 

that of THD, and consistent within the posterior uncertainties at 68% confidence level. The 

reason for the slight difference is that the NOAA background is generally slightly lower than 

THD measurements, resulting in slightly higher posterior emissions. 

We also conducted a sensitivity test of posterior emissions to different model-data 

mismatch uncertainties in the R covariance matrix. Here, we perturbed the values in the R matrix 

by multiplying the original values (i.e., those used in Jeong et al., 2012a) by factors of 0.5 – 1.5. 
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Summing over source sectors, the annual total posterior emissions ranged from 0.74±0.11 to 

0.76±0.12 Tg CH4 yr-1 with differences less than ~3% of the annual total emission.  

5.3.3. Estimating N2O Emissions 

N2O Mixing Ratios 

As mentioned in Section 5.2, N2O measurements are available for 4 of the 7 seasons used 

in the CH4 analysis during the period of 2012 - 2013. After applying the similar criteria for data 

inclusion as CH4, the remaining background-subtracted mean N2O mixing ratios used in the first 

inversions are 1.28, 1.06, 0.31 and 0.74 ppb for late fall, winter, spring and summer 2013, 

respectively. Additionally, as shown in Figure 5.8, the minimum values of the measured N2O 

mixing ratios are close to the NOAA N2O background. We also note that only one data point in 

the winter season is removed due to a very large predicted signal relative to the measurement. 

Inversion analysis of N2O 

Here, we estimate posterior emissions using the EDGAR 4.2 emission map scaled to the 

CARB emission by sector. We estimate N2O emissions for both sector (sector analysis) and 

region (region analysis). For source analysis we estimate N2O emissions for 15 source sectors, 

i.e. agricultural soils (AGS), indirect N2O emissions from agriculture (N2O), agricultural waste 

burning (AWB), manure management (livestock) (MNM), waste (solid and waste water) (WST), 

non-road transportation (TNR), road transportation (TRO), energy manufacturing transformation 

(EMT), indirect emissions from NOx and NH3 (IDE), oil production and refineries (OPR), 

buildings (Residential and others) (RCO) and industrial processes and product use (IPU), ocean, 

forest, and other anthropogenic outside California. For region analysis, 19 scaling factors are 

solved to adjust the prior emissions including 16 regions in CA, region outside CA, ocean and 
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forest regions. As in CH4, only the emissions in regions 3, 7 and 8 are considered in the posterior 

emissions. Following the first inversion, 16.9%, 7.0%, 0% and 1.6% (mean removal rate = 6.4%) 

of the data are removed for late fall, winter, spring and summer 2013, respectively. After outliers 

are removed, the SFBI is implemented for the second inversion. The best-fit slopes (prediction 

vs. measurement) and RMS errors after the final inversion are 0.94±0.04 (RMS error = 0.45 

ppb), 0.89±0.09 (0.57 ppb), 0.63±0.05 (0.27 ppb) and 0.68±0.11 (0.41 ppb) in late fall, 

winter, spring and summer 2013, respectively. Before inversion, the best-fit slopes were lower 

and the RMS errors were larger compared to the post-inversion results: 0.52±0.04 (1.03 ppb), 

0.56±0.14 (1.25 ppb), 0.48±0.04 (0.29 ppb) and 0.33±0.06 (0.58 ppb).  

The scaling factors for individual source sectors are shown in Table 5.5 by season and 

Figure 5.10. Note that the scaling factor is the ratio of posterior to a priori emissions and, as 

described, we use a priori N2O emissions that are constant over time without seasonality. The 

seasonal variation in N2O emissions is most strong in the AGS sector as one might expect from 

the cycle of agricultural activity while other sectors show only small variations (Figure 5.10). 

This seasonal variation in AGS agrees with that in region 3 (Sacramento Valley) from the region 

analysis (Figure 5.10 right).  
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Figure 5.8.  3-hour N2O mixing ratio as a function of time (mm/yy): measured N2O  mixing ratio during noon - 
afternoon hours used in the first inversion (gray open circle), measured N2O mixing ratio used in the final inversion 
(black filled circle), WRF-STILT predicted (used in final inversion) N2O mixing ratio + WRF-STILT predicted N2O 
background (NOAA background) mixing ratio during noon – afternoon hours used for the final inversion (blue open 
circle), and WRF-STILT predicted N2O background mixing ratio using the 3-D NOAA curtain (red dots). 
 
Table 5.5. Posterior scaling factors (from final inversion) for N2O by season and source.  
 

Source* Late Fall Winter Spring Summer 2013 

AGS 2.13±0.39 1.08±0.48 1.41±0.49 2.56±0.56 

MNM 1.31±0.59 1.85±0.83 1.58±0.95 1.49±0.96 

AWB 1.01±1 1±1 1±1 1.02±1 

IPU 1.49±0.72 0.48±0.62 1.27±0.96 1.34±0.86 

EMT 0.99±1 1.02±1 1.02±1 1.02±1 

IDE 1.01±1 1±1 1.01±1 1.01±1 

N2O 1.33±0.96 1.02±0.97 1.12±0.97 1.45±0.97 

OPR 1±1 1±1 1±1 1±1 

RCO 1±1 1±1 1.01±1 1.01±1 

WST 1.04±0.97 1.06±0.99 1.08±0.99 1.14±0.98 

TNR 1.01±1 1±1 1.01±1 1.01±1 

TRO 1.27±0.96 0.85±0.97 1.24±0.98 1.46±0.97 
 
*Source sectors include agricultural soils (AGS), manure management (MNM), agricultural waste burning (AWB), industrial processes and 
product use (IPU), energy manufacturing transformation (EMT), indirect emissions from NOx & NH3 (IDE), indirect N2O emissions from 
agriculture (N2O), oil production & refineries (OPR), buildings (residential & others) (RCO), waste (solid & wastewater) (WST), non-road 
transportation (TNR), and road transportation (TRO).  
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We note that winter emissions from the AGS sector and region 3 are similar to the annual 

mean in the prior, which is consistent with the result in Jeong et al. (2012b). For IPU and TRO, 

the emissions are likely lower in winter than the other seasons, but due to the large uncertainty 

the seasonality is not easily distinguishable. The posterior uncertainty for AGS is significantly 

reduced for all seasons while the MNM emissions are constrained in late fall and the IPU 

emissions are somewhat constrained in late fall and winter. This is similar to the results shown in 

the CH4 analysis where the posterior uncertainties vary by season and sector. However, as shown 

in Figure 5.10, the posterior uncertainties for other sectors remain high without much reduction 

after inversion. This suggests that we need more data to effectively constrain those sources. As 

with CH4, posterior emissions show large anti-correlation between MNM, IPU, N2O and TRO. 

This result further suggests that the data do not allow the inversion system to independently 

estimate emissions and only a linear combination of sector emissions may be resolved. This 

suggests that there could be some trade-offs between regional emissions (e.g., between Region 7 

and 8) and the total emission for the three regions can be estimated with more confidence than 

the individual regions. As in the CH4 analysis, we also tested the sensitivity of estimated 

emissions to varying model-measurement errors by perturbing the estimates in Jeong et al. 

(2012b). We find that posterior emissions range from 0.022±0.005 to 0.023±0.005 Tg N2O per 

year.  
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Figure 5.9. Comparison of N2O mixing ratios between measurements and predictions based on the final source 
inverse optimization using NOAA background for late fall (top left), winter (top right), spring (bottom left) and 
summer at 2013 (bottom right). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.10. Posterior N2O emissions in region 3, region 7 and region 8 by different sources from source inversion 
analysis (left) and region inversion analysis (right). Source sectors include agricultural soils (AGS), manure 
management (livestock) (MNM), agricultural waste burning (AWB), industrial processes and product use (IPU), 
energy manufacturing transformation (EMT), indirect emissions from NOx and NH3 (IDE), indirect N2O emissions 
from agriculture (N2O), oil production and refineries (OPR), buildings (residential and others) (RCO), waste (solid 
and waste water) (WST), non-road transportation (TNR) and road transportation (TRO). 
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Table 5.6. A priori and posterior annual N2O emissions (Tg N2O yr-1) by source sectors.* 
 

Source 
Sectors Prior Posterior 

AGS 0.006 0.01±0.003 

AWB 0 0±0 

EMT 0 0±0 

IDE 0 0±0 

IPU 0.002 0.003±0.002 

MNM 0.003 0.004±0.002 

N2O 0.002 0.002±0.002 

OPR 0 0±0 

RCO 0 0±0 

TNR 0 0±0 

TRO 0.002 0.002±0.002 

WST 0.001 0.001±0.001 

Total 0.015 0.023±0.005 
 
*The emission represents the total for regions 3, 7, and 8 near the WGC tower by source. Source sectors include agricultural soils (AGS), 
agricultural waste burning (AWB), energy manufacturing transformation (EMT), indirect emissions from NOx & NH3 (IDE), industrial processes 
and product use (IPU), manure management (MNM), indirect N2O emissions from agriculture (N2O), oil production & refineries (OPR), 
buildings (residential & others) (RCO), non-road transportation (TNR), road transportation (TRO), and waste (solid & wastewater) (WST). 

 

Here we note that the posterior emissions during 2012 - 2013 are somewhat lower than 

the previous result of 0.038±0.007 Tg N2O yr-1 reported by Jeong et al. (2012b) for 2008 - 

2009. To further investigate this difference, using the same setting as in this study, we conducted 

regional inversions for the period of 2008 - 2009 using the same prior emissions and N2O 

background inflow that is specific to the Eastern Pacific that we use for the current inversion of 

the 2012 - 2013 period. Using the updated prior emissions and background, we find annual 

posterior 2008 - 2009 N2O emissions for regions 3, 7, and 8 is 0.028±0.005 Tg N2O yr-1, which 

is lower than the estimate reported by Jeong et al. (2012b), and consistent with the posterior 

emission estimated for 2012 - 2013.   
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5.4. Discussion  

The inferred annual posterior emissions in regions 3, 7 and 8 near the WGC tower are 

0.75±0.11 Tg CH4 yr-1 based on the NOAA background, which is 1.27±0.21 time the prior 

CH4 emissions, suggesting posterior emissions for this region are not significantly different from 

the prior model. From the source sector perspective, the result suggests that the DLS, LF are the 

main contributors to the emissions around the WGC tower, with little evidence of statistically 

significant seasonal variations in CH4 emissions, with the exception of crop agriculture, where 

seasonal variations of posterior emission is likely driven by the seasonality of rice emissions 

observed in previous work (McMillan et al., 2007; Peischl et al., 2012). 

For N2O, the total annual posterior emission for regions 3, 7 and 8 is 0.023±0.005 Tg 

N2O yr-1 for both source and region analyses, which is 1.53 ± 0.33 times larger than the prior 

estimate used in this study (0.015 Tg N2O yr-1). This suggests N2O emissions from the region 

surrounding WGC were only marginally larger than the prior model in 2012 - 2013. Re-

examining previous work by Jeong et al. (2012b), we find that applying the updated prior 

emission model and marine background N2O specific to the Eastern Pacific used in the current 

work reduce posterior emissions estimated for the earlier 2008 - 2009 period such that they are 

indistinguishable from emissions in the 2012 - 2013 period given the uncertainties of the two 

analyses. Last, the inversions suggest there is an observable seasonal pattern to N2O emissions, 

with maxima in late fall and summer, and lower emissions in winter and spring that is likely due 

to variation from agricultural (AGS) sources.  

This chapter reported the inverse model estimates of CH4 and N2O emissions for the June 

2012 - August 2013 period conducted at WGC, for the purpose of comparison with PMF-derived 
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source apportionment results (from Chapter 4). In Chapter 6, the results of inverse modeling are 

compared with those of the PMF analysis and further discussion is presented. The inverse model 

results from CARB project # 11-306 for the region surrounding WGC are in the same range as 

those obtained for the time period (2012-2013) of this project.   
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6. PMF based CH4 and N2O source apportionment at Walnut Grove 

6.1. Comparison with inventory source distribution 

We herein present a direct comparison of PMF-derived CH4 and N2O source 

apportionment with distributions in regional inventories derived from ‘bottom-up’ sources 

(Figures 6.1 a and 6.1 b, respectively). Spatially resolved sector-wise 0.1° × 0.1° a priori CH4 

emissions maps with seasonal components, developed using the CALGEM emission model 

(Jeong et al., 2013) and scaled to match the 2012 statewide inventory for anthropogenic emission 

sectors (CARB, 2014; September 2014 version) as described in Section 5.2.2, is used to create  

the CH4 inventory pie chart (Figure 6.1 a).  The PMF analysis that we perform is reflective of 

regional sources and source contributions. Hence, in the derivation of the annual CALGEM CH4 

source distribution pie chart, we only include source contributions from the three zones that 

surround the WGC site and are expected to have maximum contribution to the observed CH4 

enhancements which are regions 3, 7 and 8 in Figure 5.2 (formerly Regions 6,7, and 8; Figure 1; 

Jeong et al., 2013). 

We find that the contribution of CH4 emissions from the dairy and livestock sector 

remains dominant in the regional CALGEM inventory (58 %). This is generally consistent with 

the range of PMF-based apportionment across all seasons using averaged seasonal contributions 

(61- 90 %; Figure 6.2 a-f) though the relative share of CH4 from the dairy and livestock sector is 

higher during the fall and winter season as compared to summers, when other local sources of 

CH4 are more active. The waste management source (landfills and waste water treatment 

combined) is the next largest contributor to the ‘bottom-up’ inventory (21 %). This source is not 

separately detected in the season-wise PMF results at WGC as contributions from this primarily 
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Figure 6.1. Pie charts representing (a) 2008 CALGEM CH4 emissions from regions 3, 7 and 8 scaled to match 2012 
ARB state totals for anthropogenic emission sectors; and (b)2008 EDGAR v4.2 N2O distribution over Regions 3,7 
and 8 scaled to 2012 ARB inventory total. 

urban source is likely beyond the region of influence of this apportionment analysis and even if 

detected, is likely to be included in the ‘urban and oil / gas’ source sector (in black color in 

Figures 6.2 a-f) due to the largely far-upwind and urban location of these landfills. 

In the early fall season, the wind directions are predominantly westerly (Figure 3.3 b) 

which causes the San Francisco Bay Area and its constituent landfills, waste water treatment 

plants and natural gas distribution CH4 sources to lie upwind of WGC thus increasing the 

influence of the mostly urban Region 7 defined in Jeong et al. (2013) on WGC signals. We see
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Figure 6.2., Pie charts representing PMF-derived source-wise CH4 emissions distribution at Walnut Grove tower 
during (a) early fall 2012, (b) late fall 2012, (c) winter, (d) winter-spring 2013, (e) spring 2013, and (f) summer 
2013. We note that this figure does not convey the uncertainties in apportioning CH4 to the dominant sources and 
correspondingly little significance in attribution to weak or distant sources (see section 4.2.2).  
 
 

that during this season, the relative share of CH4 emissions arising from the ‘urban and oil / gas 

source’ (26 %) is similar to that observed from summing of ‘waste management’ and ‘oil and 

gas’ CH4 emissions in the regional CALGEM inventory (31 %). In winters, when prevailing 

wind directions are generally along the valley floor (Figures 3.2 d and 3.3 d), the ‘urban and oil /  
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gas’ source has a lesser influence on CH4 emissions distribution (Figure 6.2 c) while influence of 

the dairies present in the Central Valley is much more prominent.  

The differences we observe in the annual accounting are mostly due to the magnitude of 

CH4 emissions from wetlands (natural or anthropogenic) which are also accounted for in the 

CALGEM inventory but without account for seasonality. Together with the CH4 emissions from 

rice cultivation, the flooded agriculture/wetland ecosystems in the region account for about 11 % 

of CH4 emissions annually in the CALGEM inventory (purple portions in Figure 6.1 a). We find 

that CH4 emissions from the equivalent ‘ag + soil + delta’ source sector are heavily dependent on 

seasons - with an almost non-existent contribution to the CH4 source apportionment during 

winter, and up to 28 % of the local CH4 emissions during the summer. In general, the ‘bottom-

up’ inventories for CH4 are in reasonable agreement with the PMF-derived seasonal distribution 

of CH4 emissions at WGC with respect to the major sources. The variations in the distributions 

that we encounter principally result from and can be accounted for based on the seasonal nature 

of certain CH4 sources (e.g. rice cultivation and wetlands), missing / underestimated sources (e.g. 

natural gas operations in the upwind Rio Vista fields), and prevailing seasonal meteorology ( e.g. 

for urban sources). CH4 emissions from wetland / soil management processes in the Delta (e.g. 

flooding of peatland pastures to build carbon and prevent soil subsidence) and rice cultivation are 

significant contributors to the observed ambient CH4 enhancements at WGC. Top-down 

California specific assessments to quantify the anthropogenic contribution to CH4 emissions 

from artificial wetlands will help determine the magnitude of these emissions and account for 

them in the ARB inventory.  

We present regional emissions derived from high- resolution (0.1° × 0.1°) US-totaled 

N2O emission model maps EDGAR42 (European Commission Joint Research Centre and 
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Netherlands Environmental Assessment Agency, Emission Database for Global Atmospheric 

Research (EDGAR), release version 4.2, 2010, http://edgar.jrc.ec.europa.eu) in Figure 6.1 b. We 

use the 0.1 degree EDGAR maps to generate source specific emission maps for our prior 

emission model (in Chapter 5). In this case, we scale each sector to match the 2012 ARB source 

sector totals at the state level (CARB, 2014).  We then sum over the 0.1 degree pixels within 

Regions 3, 7, and 8 and include those sums in Table 5.6 and in Figure 6.1 b. For reference, the 

statewide N2O emissions distribution in the ARB inventory is, in general, consistent with that 

calculated for the entire country in the EDGAR inventory with respect to major sources with the 

exception being that N2O emissions from industrial sources (primarily by-product of industry 

production of nitric acid and adipic acid) are primarily located outside of California and hence do 

not feature in the ARB inventory. But there are certain contrasting features that stand out when 

these ‘bottom-up’ inventories are compared with the PMF-derived N2O averaged seasonal source 

distributions at WGC. We present the seasonally resolved PMF-derived N2O source distribution 

pie charts in Figures 6.3 a-d. Firstly, manure management in the dairy and livestock sector is a 

significantly larger source of N2O at WGC than the prior emissions in the ARB-scaled EDGAR 

inventory which is also used for the inverse modeling. Secondly, N2O emissions from 

‘agricultural soil management’ at WGC display a strong seasonal nature with the emission trend 

coinciding with that of N fertilizer use during the agricultural growing season. Negligible N2O 

emissions are observed during the winter fallow season. This seasonal variability is not 

represented in the EDGAR inventory.  This could potentially result in a different annual 

emission estimate than that computed using an approach which takes environmental factors 

causing the seasonality of N2O emissions into account. This variability may impact inventory 

verification and validation conclusions for N2O, especially when comparing with emissions 
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Figure 6.3. Pie charts representing PMF-derived source-wise N2O emissions distribution at Walnut Grove tower 
during (a) late fall 2012, (b) winter, (c) spring 2013, and (d) summer 2013. We note that this figure does not convey 
the uncertainties in apportioning N2O to the dominant sources and correspondingly little significance in attribution 
to weak or distant sources (see Section 4.2.2). 

derived from short-duration studies to annual inventory estimates. Finally, but perhaps most 

importantly, we do not see evidence of N2O emissions originating from the transportation sector 

(primarily from urban regions) influencing the WGC site.  The PMF analysis consistently 

produces an ‘urban and oil / gas source’ (black factor in Figures 6.2 a-f) that likely contains CH4 

contributions from urban sources (including from landfills) but no N2O is apportioned to this 

source in any season. This finding is consistent with the absence of N2O in the ‘vehicle emission’ 

source profile observed at Bakersfield (Guha et al., 2015). Both the statewide ARB inventory 

(CARB, 2015) and the regional EDGAR inventory (Figure 6.1 b) have a substantial fraction of 

N2O emissions attributed to the transportation sector. This mismatch highlights a need for further 

evaluation of the bottom-up statewide inventory of N2O emissions from the transportation sector. 
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6.2. Comparison with Bayesian inverse analysis based source distribution 

The mean data from Figures 5.7 (left) and 5.10 (left) have been used to create the 

seasonally apportioned, inverse dispersion-derived, source-wise emissions distribution CH4 and 

N2O pie charts as seen in Figures 6.4 and 6.4, respectively. It must be noted that the regional 

emissions represented in the CALGEM CH4 distribution (Figure 6.1 a) are specific to 

California’s Regions 6, 7 and 8 (Jeong et al., 2013) while the analysis conducted in Chapter 5 

focuses on Regions 3, 7 and 8. Region 6 in prior analyses (Jeong et al., 2013) is similar to the 

current Region 3. The  current Region 3 is actually Region 6 + Region 11 (small emissions as 

compared to Region 6) in Jeong et al. (2013) The change has been applied to be consistent with 

ARB’s air basin classification in the most recent work. We combine inverse-analysis regional 

CH4 emissions from the waste water (WW), landfill (LF), natural gas (NG) and petroleum (PL) 

sectors into a single category in Figure 6.4. The CH4 emissions sources contributing to this group 

are mostly located in Region 7, and hence summation of CH4 emissions from this group can be 

best categorized and represented by the PMF-derived ‘urban + oil and gas’ source factor.  

On comparison of the season-specific plots in Figure 6.2 (a-f) and Figure 6.4 (a-f), we 

observe that the ‘dairy and livestock’ source (generated by combining DLS and NDLS sectors 

from Chapter 5) generally remains the dominant source of CH4 in the Bayesian analysis.  The 

contribution of the ‘urban + oil and gas’ source to the Bayesian seasonal distribution is also 

significant throughout the annual cycle and is consistently larger than the same source’s 

contribution to the PMF-derived apportionment for all seasons. At the same time, the 

contribution of CH4 emissions from the ‘agriculture + delta’ source is larger in the apportionment 

based on PMF analysis as compared to the inverse analysis distribution. These observations  
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Figure 6.4. Pie charts illustrating the distribution of CH4 emissions (percentage of total) from regional sources 
(Region 3, 7 and 8) using Bayesian inverse analysis as described in Chapter 5. The pie charts represent (a) early fall 
2012, (b) late fall 2012, (c) winter, (d) winter-spring 2013, (e) spring 2013, and (f) summer 2013. We note that these 
figures do not convey uncertainties in the estimates which are presented in Section 5.3.2 and Table 5.3. 

suggest that the efficacy of PMF analysis is limited by location of emissions sources with respect 

to the receptor location. The urban sources of CH4 emissions are far enough from WGC (> 100 

km) that CH4 enhancements from the sources in this region (Region 7) are reasonably well-

mixed and diluted as they arrive at WGC.  Thus, while PMF analysis lacks the statistical power 

to apportion relatively minor and far away sources, the contribution of the ‘urban + oil and gas’ 

source itself seems to be under-represented in the PMF distribution.  Using the same logic, we 
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conclude that emissions from relatively nearby sources such as livestock, wetlands and rice 

agriculture produce distinct enhancement signals that are distinguishable and can be partitioned 

using PMF. Hence the PMF-based results  illustrated  in Figures 6.2 a-f, which apportion a larger 

share of observed enhancements to nearby sources (like livestock) as compared to farther sources 

(like urban and oil and gas), is representative of a smaller regional footprint than that which is 

estimated by the Bayesian inverse analysis in Figures 6.4 a-f. Nonetheless, the relative 

distribution of three major CH4 source categories in the region estimated from the same receptor 

location (WGC), over the same annual time frame and using two independent and different 

apportionment techniques are similar and cannot be clearly distinguished given the uncertainties 

in both techniques. 

Figure 6.5. Pie charts illustrating the distribution of N2O emissions (percentage of total) from regional sources 
(Regions 3, 7 and 8) using Bayesian inverse analysis as described in Chapter 5. The pie charts represent (a) late fall 
2012, (b) winter, (c) spring 2013, and (d) summer 2013. We note that these figures do not convey uncertainties in 
estimates which are presented in Section 5.3.3 and Table 5.5. Refer to Figure 5.10 for absolute emissions from each 
source in each season. 
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The pie charts in Figure 6.5 a-d represent the season-specific N2O emissions source 

distribution, derived using Bayesian inverse analysis (Chapter 5) from WGC tower with a 

regional footprint representing Regions 3, 7 and 8. A comparison of the PMF-derived plots 

(Figure 6.3 a-d) and inverse analysis plots (Figure 6.5 a-d) indicates that while PMF is able to 

detect a clear seasonal pattern to N2O emissions from the ‘ag soil management and delta’ source 

factor, a smaller temporal pattern is captured in the inverse analysis distribution. This may be in 

part because the a priori emission model does not incorporate seasonally varying nitrogen use 

activity data to that extent of detail that simulates real-time situations.  However, it is critical to 

note that the PMF analysis, which relies on day-night differences in mixing ratio to estimate 

relative source contributions, is more sensitive to local emissions than the more regionally 

averaged signals obtained from the daytime measurements used in the Bayesian  inverse model 

analysis.  This leads to different footprints affecting the Bayesian and PMF results, with the 

prevalence of more local valley sources having larger contributions in the PMF analysis. Hence 

agricultural soils, which can be a very large local N2O source, appear disproportionately large 

during the summer.  In contrast, manure management source is relatively smaller in the PMF 

results while it represents a more significant source of N2O emissions in the inverse analysis.  

Emissions of N2O from transportation sector (red), wastewater treatment (blue) and industrial 

processes (black), originating in the urban core of the San Francisco Bay Area do not create a 

large day-night difference as they are relatively well-mixed as they arrive at WGC and are hence 

not differentiated by the PMF analysis and in the corresponding plots (Figure 6.3 a-d). The 

inverse analysis plots, derived from a priori inventory information, do resolve the measured 

enhancements into contributions from numerous N2O emissions sources including transportation, 



 

166 
 

waste treatment, electricity and residential use and industrial processes. PMF and inverse 

modeling analysis thus each provide analytical resources that are complimentary. 
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7. Summary and Recommendations  

7.1. Summary of source speciation work using VOCs 

In this report we attempt to understand the spatial and temporal distribution of CH4 and 

N2O sources by conducting year-round measurements from a tall television transmission tower in 

Walnut Grove (WGC) at the eastern edge of the Sacramento – San Joaquin River Delta in the 

Central Valley of California over 2012-13. In Chapter 4 the mixing ratio measurements are 

combined with coincident measurements of 10 VOCs and CO serving as potential source 

markers, and a Positive Matrix Factorization source-apportionment technique is applied to 

investigate the sources of CH4 and N2O influencing the measured signals at this site. The year-

long measurements were divided up into seven unique periods representative of broad 

temperature / precipitation regimes encountered in this region, and also to match the data 

continuity of measured tracers in each individual period. We find that dairies and livestock 

operations in the region surrounding WGC are the largest contributor to the observed CH4 

enhancements accounting for 55 – 90 % of the emissions depending on time of the year. The 

variation in proportion of CH4 enhancements ascribed to this source is mainly caused by the 

varying contribution from the ‘agriculture + soil management + delta’ source, which was the 

second most important contributor to methane enhancements and varied substantially over the 

course of the year.  This source contains anaerobically mediated emissions from a combination 

of wetlands, peatland pastures and flooded / drained agricultural systems e.g. rice in the 

surrounding Delta. The CH4 contribution from this sector is temperature driven with peak 

contributions in the summer season (20 - 40 % of enhancements) as opposed to late fall and 

winter season when contributions to CH4 signals from this source are negligible and hence 
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undetectable by PMF. CH4 contributions from a third source, the ‘urban and oil / gas’ source, 

were observed in all seasonal periods. This source contains emissions from the upwind urban 

core, petroleum refineries, and natural gas operations in the Delta and accounts for 10 - 20 % of 

the total CH4 enhancements. This sources’ relative contribution was highest during the early fall 

period (up to 30 %) when the temperature-dependent CH4 emissions from the Delta emissions 

are decreasing, and in the late fall period (up to 35 %) when CH4 emissions from the Delta are 

absent and observed wind speeds and directions are more variable increasing the influence of the 

nearby Rio Vista gas fields on the apportioned signals at WGC.  

N2O is measured in four periods (late fall, winter, mid-spring and summer) in this study. 

N2O is primarily apportioned to two sources. One of the sources is the ‘agricultural + soil 

management’ source arising from the N fertilizer application for intensive crop cultivation in the 

Delta. This N2O source is very seasonal with peak contributions occurring in the spring and 

summer season (~ 80 – 90 %) coinciding with the cycle of fertilizer use in the first half of the 

growing season. In the late part of the fall season, as agricultural activities around WGC are 

winding down and so is the added fertilizer N input to farmlands, this source only accounts for 

about 20 % of the observed N2O enhancements with the dominant share (~ 80 %) being 

attributed to N2O emissions from the dairy and livestock sector. In the winters, there is much less 

agricultural activity taking place around WGC, and the ‘ag +soil management’ source factor is 

not observed in the PMF analysis of the wintertime data. Subsequently almost all of the N2O in 

winters is attributed to the dairy and livestock sector. We also observe that a source consisting of 

contributions from primary biogenics and secondary organics is consistently produced in PMF 

analysis for all seasonal periods. No detectable contributions of CH4 and N2O signals come from 

this source, which reinforces that plants and crops do not emit these GHGs as direct emissions.  
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We conclude that, for CH4, the seasonally resolved apportionment of major sources at 

WGC is broadly consistent with the distribution in the regional inventory if the influence of far-

away sources (e.g. landfills) is not considered.  The relative contribution of CH4 emissions from 

wetlands / land management practices in the Delta to the overall apportionment at WGC is 

substantial in warm temperature regimes (e.g. summers) and the bottom-up inventory 

verification mechanisms and studies need to account for the seasonality in emissions from this 

sector. The consistent lack of N2O in the ‘urban’ source factor in all seasonal PMF analyses 

highlights the insignificant contribution of vehicle emissions to ambient N2O observations when 

measured at this site. Evidence from results of PMF analysis in Bakersfield (Guha et al., 2015) 

provides a similar conclusion in a region that has a mix of urban and agricultural sources. The 

seasonal variations we observe in emissions of CH4 and N2O from certain sources has 

implications for how data from short-term studies should be used for inventory verification. Data 

from ground-based studies, ‘snapshot’ airborne measurements and back-trajectory analysis on 

temporally-limited data may not be able to capture the complete cycle of emissions produced 

from these sources leading to bias in estimates resulting from such studies. Short-term studies, 

thus, cannot yield emission factors that can be used to verify the weighted annual emission 

factors used in the ‘bottom-up’ inventories, especially for seasonally varying sources like N2O 

from agriculture, CH4 from artificial wetland and rice cultivation etc. In light of our findings, we 

propose long-term source-specific ground-measurements as a more representative method to 

account for CH4 and N2O emissions from sources that can be expected to have a seasonal pattern 

of variability. 

7.2. Recommendations on future work 
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In this report, we have augmented understanding of the relative importance and 

seasonality of sources for two major GHGs, CH4 and N2O, in the Sacramento-San Joaquin Delta 

region of Central Valley of California. The Central Valley is one of the most industrialized and 

high-producing agricultural regions of the world producing ~ 8 % of the nation’s agricultural 

output by value, on less than 1 % of total farmland in the United States (CASR, 2011), thereby 

rightly earning the nickname ‘nation’s vegetable and fruit basket’. The San Joaquin Valley also 

sits on top of rich oil and gas formations that support a vast oil and gas extraction and processing 

industry. The San Joaquin Valley alone would be ranked fourth in oil production in the nation if 

it were a state (~ 515,000 barrels of oil per day), while just Kern County has more than 42,000 

producing oil wells that account for ~ 68% of the oil produced in California, 10 % of US 

production, and close to 1 % of total world annual oil production (DOGGR, 2012).  This means 

there are a multitude of significant emissions sources of GHGs and VOCs arising from this 

extensive agro-industrial complex that are collocated and co-emitting into the same atmospheric 

boundary layer. Our ability to apportion and resolve these GHG sources into unique 

combinations using VOC source markers is critical to the success of ‘top-down’ measurements 

and also in the verification and validation of the ‘bottom-up’ GHG inventory. We believe that 

there are two main conclusions from this work which suggest the need for further research to 

improve the CARB GHG emission inventory - first, the seasonality of major sources of CH4 and 

N2O from agricultural sector, and second, the magnitude of N2O from the transportation sector. 

Furthermore, our work has developed a baseline understanding of how to use VOC’s as GHG 

source tracers in top down PMF analysis, and we recommend that ARB invest in further 

application and development of this approach. The results from this work suggest that more 

comprehensive (more locations) and consistent longer term studies that rely on tall tower 
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measurements and include VOCs as measured tracers would be useful for improving the ‘state of 

knowledge’ regarding CH4 and N2O source emission strengths in different regions of California. 

With the PTRMS that was used in the current study, we were limited to simultaneous 

monitoring of about 20 masses at unit mass resolution with an effective upper size limit around 

200 m/z due to the scanning speed and sensitivity of the quadrupole mass spectrometer detector. 

Even more comprehensive measurements are now possible using a newer Proton Transfer 

Reaction Time of Flight Mass Spectrometer (PTR-TOF-MS). The TOF enables simultaneous 

measurements of the complete VOC spectrum with mass resolution of >4000 M/M providing 

separation of even more VOCs, and chemical formula identification from the measured exact 

masses. With PTR-TOF-MS, hundreds of VOC compounds are observable with high enough 

time resolution to also calculate fluxes by eddy-covariance (Park et al., 2013).  In addition, the 

PTR-TOF-MS is equipped with a new Switchable Reagent Ions (SRI) system that provides 

capability for measurements using NO+ or O2
+ in addition to the conventional H3O

+ ionization 

mode. These ionization modes allow for substantial expansion of the measurable VOC suite to 

include alkanes (e.g. ethane, propane, butane, which should serve as extremely useful tracers of 

natural gas emissions) which have lower proton affinities than H2O and therefore cannot be 

detected in the conventional H3O
+ mode. Including alkanes and many other VOCs measurable 

using PTR-TOF-MS with SRI should significantly improve characterization and tracing of GHG 

emission categories in future studies. 

As a demonstration of this new capability, we borrowed National Center for Atmospheric 

Research (NCAR’s) PTR-TOF-MS to measure the gradients at WGC in parallel with the PTR-

MS for two weeks in February 2013 (and we now have our own PTR-TOF-MS with SRI at UC 

Berkeley). As mentioned in Sect. 3.3, these data were already useful for validating the nominal 
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masses of the PTR-MS and confirming the dominant compound attributions. As an example of 

the expanded measurement capability, Figure 7.1 shows the average diurnal cycle of 

concentration gradients from the PTR-ToF-MS for a portion (48) of the more than 300 detected 

ions at WGC. Diurnal and vertical patterns show behavior consistent with boundary layer 

dynamics, wind profiles and source activity for a broad array of VOCs from different sources. 

Mass concentration of oxygenated VOCs with two or more than two oxygen atoms, and with 

nitrogen + oxygen generally increased with height because these are secondary compounds 

formed by photochemical production in the atmosphere. The opposite was true for pure 

hydrocarbons and reduced nitrogen containing VOCs which generally are primary emissions and 

thus highest near the ground where they were emitted. The remaining species include 

halogenated as well as other volatile compounds detectable using H3O
+. For example, the highest 

molecular weight compounds (the last 3 panels) are cyclic volatile methylsiloxanes (cVMS) 

which have been recently identified as volatile emissions from personal care products such as 

antiperspirants where they are often a dominant ingredient (Tang et al., 2015), and may also 

serve as tracers for wastewater treatment facilities where these compounds tend to accumulate 

following human bathing. At WGC, the observed pattern of cVMS suggests these compounds 

are emitted locally, accumulating near the ground early in the morning. 

To understand the seasonality of emissions from the agricultural sector, ARB should also 

prioritize smaller spatial scale future studies and experiments. Short-range inverse dispersion 

techniques, where a backward Lagrangian Stochastic (bLS) atmospheric dispersion model 

coupled with a Monin-Obukhov similarity theory (MOST) description of near-surface winds can 

be used to infer source emission rates from upwind and downwind gas concentration
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Figure 7.1. Mean vertical concentration gradient diurnal profiles for 48 selected ions measured by PTR-ToF-MS at WGC from February 12 to February 20, 
2013. The color scale represents concentration (ppb) of the selected ion, x-axis represents local time of day and y-axis represents height (a.g.l).
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measurements (Flesch et al., 2004). Experiments based on this technique have been shown to 

provide reliable long-term estimates of CH4, NH3 and N2O emissions from a variety of area 

sources like dairy farms and agricultural fields (McGinn et al., 2006; Turner et al., 2010; Leytem 

et al., 2011; Ro et al., 2013; VanderZaag et al., 2014). These could also be combined with 

PTRMS or PTR-TOF-MS measurements to provide clear and useful chemical source signatures 

for constraining larger scale top down analyses. Ground based eddy covariance, using fast-

response analyzers, has been demonstrated to be a robust method to directly measure emissions 

of CH4 and N2O over relatively homogenous area sources e.g. rice paddy and wetlands (Teh et 

al., 2011; Baldocchi et al., 2012; Hatala et al., 2012; Knox et al., 2014). Both the above 

mentioned techniques can be applied over complete annual cycles to determine unique emission 

rates representative of different seasons and farm management practices. These direct estimation 

methods are conducted at facility-level or field-level spatial resolutions. These data would 

complement the knowledge derived from the regional high spatial resolution (0.1° × 0.1°) long-

term multi-tower based WRF-STILT back trajectory analysis (Jeong et al., 2012a, 2012b, 2013) 

and PMF derived from long term studies using VOC tracers, and together, these methods can be 

used to constrain the non-CO2 GHG inventory effectively. An expansion of ARB’s current CH4 

network to a CH4/N2O/VOC framework could be very useful to combine the advantages of 

inverse dispersion modeling and statistical source apportionment at the same time.   

At the scale of individual fields or landfill facilities, a combination of ground-based eddy 

covariance from small towers and automated chamber measurements offer direct and reliable 

ways to estimate emissions as they provide either an integrated whole-ecosystem flux (eddy 

covariance) or spatially resolved measures of gas exchange (e.g. Teh et al., 2011; Zhang et. al., 

2014). In this respect, modern analyzers capable of providing high frequency continuous 
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measurements of N2O have only recently become available, and can be utilized to provide eddy 

covariance measurements of N2O while chambers can provide more detailed information on 

what part of the soil system (e.g., between, on top of, or on the side of furrows) emits N2O. Year-

long flux measurements on crop lands with different major crop types (e.g rice, corn, walnuts, 

etc.) would allow quantification of fluxes from high-impact events and conditions like fertilizer 

spraying, application of pesticides, tilling, precipitation, flooded agricultural residues, drainage 

of fields etc. Projects funded by CARB that share similar goals are already underway in the state. 

These direct N2O estimates can provide a wealth of valuable information to verify, validate and 

improve the inventory and also to assess the agreement with Denitrification-Decomposition 

(DNDC) and other biogeochemical models.  

Direct, continuous, and simultaneous measurements of CH4, N2O, CO, VOCs, and CO2 at 

fixed sites in confined emissions spaces like tunnels, and also on highways from mobile 

measurement platforms (like instrument vans) can provide critical constraints on transportation 

sector emissions in real world operation. These experiments can allow on-road measured 

N2O/CH4/CO2/CO/VOC vehicle emission ratios to be determined for the California fleet that can 

be compared with the inventory based EMFAC emission factors. Such approaches will be quite 

effective in verifying and validating the CARB N2O emissions inventory for mobile sources and 

for interpreting source profiles determined from PMF analysis at fixed tall tower sites.  

Finally, aircraft scale flux measurements of GHGs, a wide suite of VOCs, NOx, and 

potentially other air pollutants of interest have recently been proven viable with ~ 2 km spatial 

resolution (e.g. Misztal et al., 2014; Goldstein et al., 2014; Karl et al., 2013). Flux measurements 

at this spatial resolution would be extremely useful for mapping actual emission distributions 

over large areas of California including urban, rural, agricultural, or oil producing regions.  
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These data could serve as a critical and periodic top down assessment of those non-CO2 GHG 

sources for which previous top-down observations are scarce and/or for verifying the bottom-up 

estimates of those GHG sources whose emissions are not microbially-mediated (hence not 

seasonally varying) and can be reasonably well-defined by scaling up individual sources such as 

cogeneration plants and refineries. We strongly recommend that the ARB develop this capability 

in collaboration with the University of California atmospheric science community. 
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GLOSSARY OF SYMBOLS AND ACRONYMS 

 
AGAGE    Advanced Global Atmospheric Gases Experiment 

AGS     agricultural soils sector for N2O 

ARB     California Air Resources Board 

AWB     agricultural waste burning sector for N2O 

CALGEM    California Greenhouse Gas Emission Measurements 

CalNex    California research study at the nexus of air quality and climate change 

CH4     methane 

CO         carbon monoxide 

CO2         carbon dioxide 

CO2eq     carbon dioxide equivalent 

CP     crop agriculture sector for CH4 

DLS     dairy livestock sector for CH4 

DOE     Department of Energy 

EDGAR    Emission Database for Global Atmospheric Research 

EMT     energy manufacturing transformation sector for N2O  

GEIA     Global Emissions InitiAtive 

GHG         greenhouse gas 

GWP                    global warming potential relative to CO2 on mass-basis for different averaging 

times (g CO2-eq/g other gas) 

IDE     indirect emissions from NOx & NH3 sector for N2O 

IPU     industrial processes and product use sector for N2O 

LBNL    Lawrence Berkeley National Laboratory 

LF      landfill sector for CH4 

LGR     Los Gatos Research Inc. 

LSM     land surface model 

m/z     mass to charge ratio 

MeOH    methanol 

MNM    manure management sector for N2O 

MODIS    Moderate Resolution Imaging Spectroradiometer 
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MW     molecular weight 

MYJ     Mellor-Yanada-Janjic scheme for PBL simulations in WRF 

NDLS    nondairy livestock sector for CH4 

NG     natural gas sector (including oil production) for CH4 

NH3     ammonia 

NOx     generic term for the mono-nitrogen oxides 

N2O     nitrous oxide 

N2O     indirect N2O emissions from agriculture sector for N2O 

NOAA    National Oceanic and Atmospheric Administration 

O&G                    oil and gas 

OPR     oil production & refineries sector for N2O 

PBL     planetary boundary layer 

PL      petroleum sector (refinery and on-road mobile source) for CH4 

PMF     Positive Matrix Factorization 

ppb     parts per billion    

PST     Pacific Standard Time 

PTR-MS      Proton Transfer Reaction Mass Spectrometer 

RCO     buildings (residential & others) sector for N2O 

RH     relative humidity 

RMS     root mean square 

RMSerr    root-mean-square error 

SFBI     scaling factor Bayesian inversion 

STILT    Stochastic Time-Inverted Lagrangian Transport 

Tg      tera gram, 1012 g 

TEC     Thermo Electron Corporation 

THD     Trinidad Head station 

TNR     non-road transportation sector for N2O 

TRO     road transportation sector for N2O 

UC         University of California 

USEPA    United States Environmental Protection Agency 

VOC     volatile organic compound 



 

183 
 

WGC     Walnut Grove, California 

WL     wetland sector for CH4 

WRF     Weather Research and Forecasting 

WST     waste (solid & wastewater) sector for N2O 

WW     wastewater sector for CH4 

 

 

 

 


